

TSUBAKI Overload protection and control devices

Safety

Safety devices for protecting machinery from potentially damaging mechanical and electrical overload.

Both mechanical and electrical types are available.

Creating device safety and control

From safety mechanisms like Torque Limiter, Shock Guard and Shock Relay, to controlling devices like Torque Keeper and Shock Monitor, SAFCON provides your vital machinery with top-notch safety and control.

Control

Contributing to device automation.

Torque Limiter Friction type

Shock Guard Separation type

Axial Guard Linear actuating type

Shock Relay Current type

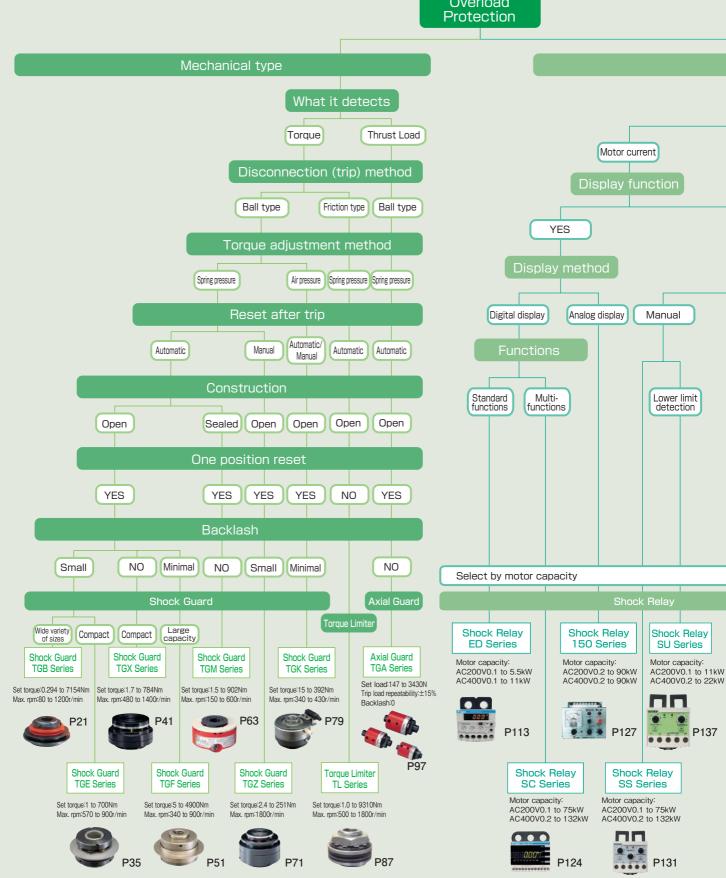
TSUBAKI Safety and Control devices

Torque Keeper

Mechanical type slipping clutch and brake

MINI-KEEPER

Mechanical type slipping clutch and brake

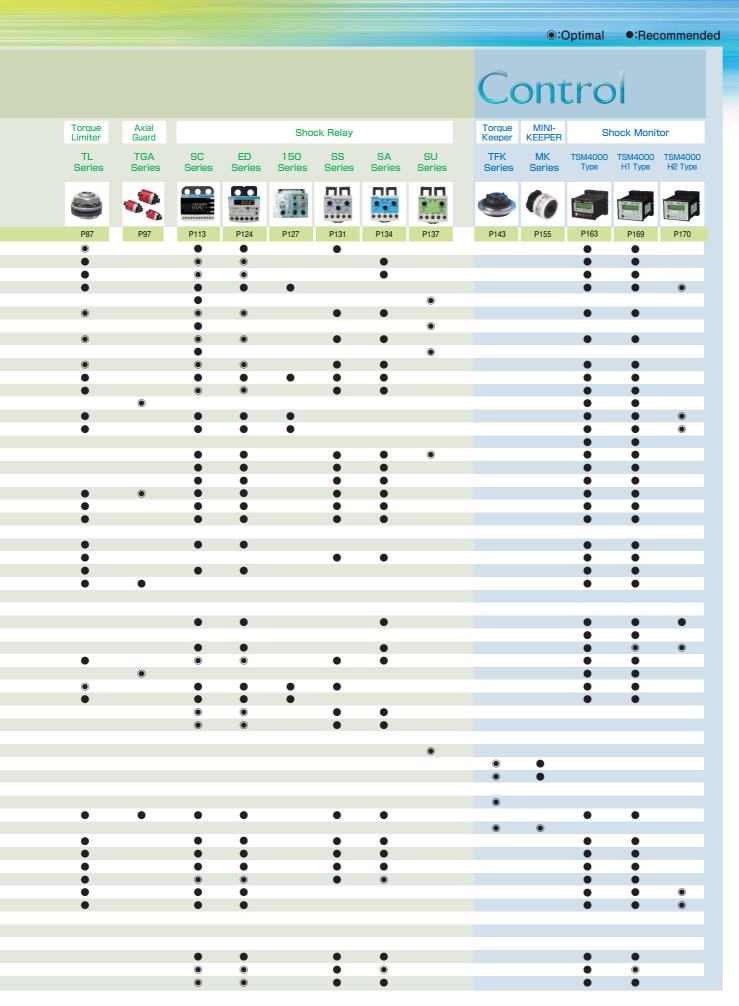

Shock Monitor

Electric type overload protection device and load sensor

Variation

Overload

SAFCON contributes to the protection and control

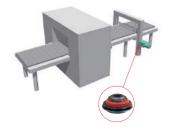

Starting with the examples below, SAFCON meets a wide range of industrial equipment safety and control needs.

	Selection			Safety							
guide			Shock Guard								
				TGB Series	TGE Series	TGX Series	TGF Series	TGM Series	TGZ Series	TGK Series	
Category	Machine Safety or Co	ntrol	Protection, detection, applications		8		8		8		
		age		P21	P35	P41	P51	P63	P71	P79	
Transport	Crane	S	Overload protection for machine overload, jamming, etc.	121	1 00	141	101	1 00		170	
Transport equipment	Hoist	S	Overload protection for machine overload, jamming, etc.								
	Chain block	S	Overload protection for machine overload, jamming, etc.								
	Overhead conveyor	S	Chain breakage protection								
	Overhead conveyor		Chain breakage detection		_		_	_			
	Belt conveyor	S	Belt breakage protection	•				•			
	Belt conveyor	S	Belt breakage detection								
	Chain conveyor	S	Chain breakage protection	•			•	•			
	Chain conveyor Roller conveyor	S	Chain breakage detection				•				
	Screw conveyor	S	Roller axis damage protection Screw damage protection								
	Bucket elevator	S	Prevents chain breakage due to bucket jamming								
	Industrial robot	S	Drive portion, pivot portion overload protection			•					
	Garbage disposal equipment		Overload protection for garbage conveyor								
Environmental equipment	Water treatment equipment		Prevents chain breakage for scraper and dust collector								
equipment	Water gate	S	Gate and rack damage protection	•	•						
	Pump	S	Motor protection								
Pump	Compressor	S	Motor protection								
	Blower	S	Motor protection		_	_	_	_			
	Bag making and packaging machin		Overload protection for film feeding and seal/pillow packaging machine cutter	•	•	•	•			•	
Packaging machine	Cartoning machine		Overload protection for workpiece conveyor and packaging equipment	•	•	•	•			•	
macmine	Vacuum packaging machine Filling machine	S	Overload protection for workpiece conveyor, seal, and cutter Clutch function and overload protection for intermittent workpiece conveyor	•							
	Flour mill	S	Overload protection for milling, mixing and sifting machine	•	•						
Food	Noodle-making machine		Overload protection for mixer and roller/extruder			•				•	
processing machine	Bakery equipment		Prevents chain breakage for fermentation oven and cooler		•	•	•				
madrine	Beverages	S	Overload protection for bottle/can conveyor and dehydrating press	•	•	•	•			•	
	Turning machine	С	Tip breakage detection								
	Machining	С	Drill wear detection								
Machine		С	Grinding stone contact detection								
tools	Tapping machine	С	Tap breakage detection								
	Cutter Chip conveyor	C S	Saw contact detection Prevents damage due to jammed chips								
Metal working	Press	S	Punch and transfer portion protection		_						
machinery	Casting	S	Overload protection for conveyor unit		•	•					
Iron and steel	Rolling machine	S	Overload protection for conveyor unit		_						
Disastis	Injection molding machine	S	Screw and mold clamping protection			•		•			
Plastic processing	Extruding machine	S	Screw and gear protection								
machine	Gear pump for extruding machine		Gear and axis protection		•		•				
	Extruding machine		Heater wire breakage detection								
Textile	Spinning machine		Winding-off portion tension control Winding-off portion tension control								
machine	Textile weaving loom Winder	S	Protection of rocking arm driving servo motor for carbon fiber winder								
Printing		С	Printed material tension control								
machine	Book binder	S	Protects pressure portion and conveyor from overload damage	•	•	•	•		•		
	Printer	С	Printed material tension control								
IT	Liquid crystal manufacturing devic		Conveyor unit overload protection	•		•					
	Semiconductor production device	e S	Conveyor unit overload protection	•		•					
	Crusher	S	Crusher blade protection						•		
	Raw garbage processor		Mixing blade damage protection	•							
Others	Mixer	S	Mixing blade damage protection								
	Kneading machine		Mixing blade damage protection								
	Automotive testing machine Can making machine		Damage protection for torque measuring instrument for engine bench test machine Clutch function and damage protection for aluminum can pressing machine				-				
	Capper	S	Closing torque adjustment for drum can cap							•	
	Feeder	S	Workpiece jamming detection								
	Stage device	S	Floor mechanism overload protection								
	Lighting system	S	Overweight detection for lifting devices								

Axial Guard Torque Limiter

Shock Relay

of a wide range of industrial equipment


Application Safety

Providing optimal overload protection

TSUBAKI mechanical and electrical safety devices provide overload protection for various applications.

Cutter drive portion overload protection

Product used

Shock Guard **TGB Series**

P21

Features

- Automatic reset
- Economical

Rotary filling and packaging machine

Protects the machine from intrusion

Product used

Shock Guard TGE Series

P35

Features

- Automatic reset
- Works with wide gears

Small precision printer

Protects the machine

Product used

Shock Guard TGX Series

Features

- Non-backlash Automatic reset
- One position

Index table

Indexer protection

Product used

Shock Guard **TGF Series**

Features

- The index table can be installed directly.
- One position
- Automatic reset

Pump

Protects the pump from highly viscous material

Product used

Shock Guard TGM Series

Features

- Sealed construction
- One position

Extruding machine

Trips to protect the machine and screw from overload to the screw

Product used

Shock Guard TGZ Series

Features

- Works with high rpm
- Rotates freely after trip

Drum can cap closer

Works when closing a cap with the prescribed torque Remotely adjust the torque of

Features

- Remote torque adjustment
- Clutch function

Conveyor

Protects the machine from overload due to jamming

Product

Torque Limiter

P87

Features

- Automatic reset
- The sprocket can be directly mounted, making it easy to use

Shock Relay

Mechanical type features

Due to cutting the peak load, overload does not occur. Excessive power to the loaded axis can be shut off.

Electronic type features

All models are equipped with the start time function. Price stays same regardless of motor size.

Pusher

the machinery

Protects the mechanical system from overload due to the work piece getting caught up in

Product

Axial Guard

Features

Can protect from overload on the axial direction

Lifting and lowering device Detects overweight

Product used

Shock Relay **ED Series**

P124

Features

- While verifying motor current during operation, the load value can be precisely set on the digital display
- Economical

Product

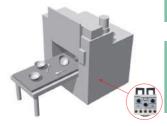
used

Multiple conveyors

Perform remote monitoring by using the communication

Product used

SC Series


P113

Features

- Loads on multiple conveyors can be monitored remotely with a PC using the communication function.
- Parameter values can also be changed remotely.

Dishwasher

Stops overload when spoons or other utensils get jammed in the machine

Shock Relay SS Series

Features

Compact and economical

Shredder

Temporarily stops the shredder when the load becomes heavy

Product used

Shock Relay SA Series

P134

Features

- Convenient automatic
- Compact
- Economical

Submersible pump Prevents pump motor burnout

Product used

Shock Relay SU Series

Features

- Compact
- Economical
- Test functions

Multi-spindle drilling machine

Overload protection and breakage detection for each tool

Product used

Shock Monitor TSM4000

P163

Features

- Detects overload and tool breakage when machining with high precision
- The set value for each tool can be changed (8 types)

Water treatment equipment

Product used

Shock Monitor TSM4000H2 Type

P170

Features

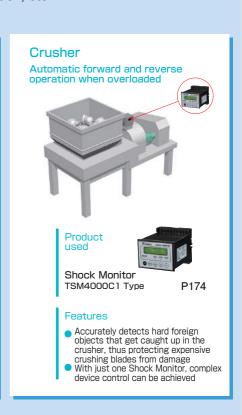
 Because of the load following function, the set value can be followed and abnormal load can be detected precisely even if there is a small efficiency change in the high gear ratio reducer

Application Control

For controlling devices

Slipping clutch and brake

Because it is possible to use even with continuous slipping, it is ideal for braking, accumulation and dragging.



Power sensor

Preventitive device maintenance and automation can be realised by detecting minute overload variation for grindstone-work piece contacts, tool wear, crusher automatic operation, etc.

Safety Devices

Mechanical Type

Shock Guard, Torque Limiter, Axial Guard

	Features, variation	p9 to p10
	Selection guide	p11 to p12
	Selection	p13 to p18
	Ordering method	p19 to p20
9	Shock Guard TGB Series	p21 to p34
9	Shock Guard TGE Series	p35 to p40
8	Shock Guard TGX Series	p41 to p50
9	Shock Guard TGF Series	p51 to p62
9	Shock Guard TGM Series	p63 to p70
8	Shock Guard TGZ Series	p71 to p78
	Shock Guard TGK Series	p79 to p86
	Torque Limiter	p87 to p96
The St.	Axial Guard	p97 to p106

Features

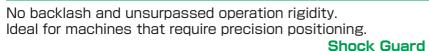
Mechanical type safety devices

Shock Guard, Torque Limiter, Axial Guard

General use, economical

Shock Guard **TGB Series**

Easy to operate and reasonably priced. Can be used with almost all machines.


General-purpose, wide torque setting range TGE Series

Shock Guard

Compact design. Applicable to small-diameter sprockets and wide pulleys.

High precision, high rigidity

Shock Guard **TGX Series**

Ideal for indexers

TGF Series

Excellentreset position accuracy.

Sealed construction TGM Series

Shock Guard

The sealed type possesses unsurpassed precision. Excels in wet, oily and dusty environments.

ON-OFF, release

Shock Guard TGZ Series

As a release type protection device, as well as an ON-OFF clutch. its simple layout makes it easy to use.

Shock Guard

Air clutch structure TGK Series

Enables remote torque adjustment during operation.

Friction type

Torque Limiter

Traditional friction type. Super low price and easy to use.

Linear actuating type Axial Guard

This is a new type of overload protection device with ball and groove construction.

Mechanical safety device variation

In order to meet the diverse needs of our customers, we provide a wide range of mechanical safety products. Refer to the chart below to choose the functions and device characteristics that best suit your safety needs.

Product name	Shook Guard						
		TGB S					
Function, capacity	Compact size (TGB08 to 16)	Medium size (TGB20 to 70)	Large size (TGB90 to 130)	With sprocket (TGB20 to 70)	TGE Series	TGF Series	
Torque range [N·m]	0.294 to 11.76	9.8 to 1080	441 to 7154	9.8 to 1080	1.0 to 700	5.0 to 4900	
Bore range [mm]	6 to 16	10 to 70	45 to 130	10 to 70	12 to 50	10 to 90	
Repetitive motion torque accuracy	±10%	±10%	±10%	±10%	±5%	±5%	
Backlash	None	Small	Small	Small	Small	Minimal	
Reset method	Automatic	Automatic	Automatic	Automatic	Automatic	Automatic	
Overload detection	TG Sensor	TG Sensor	TG Sensor	TG Sensor	TG Sensor	TG Sensor	
Torque indicator	Yes	Yes	Yes	Yes	No	Yes	
Exterior							

Product name	Shock Guard				Torque Limiter	Axial Guard
Function, capacity	TGX Series	TGM Series	TGZ Series	TGK Series	L	TGA
Torque range [N·m]	1.7 to 784	1.5 to 902	2.4 to 451	15 to 392	1.0 to 9310	147 to 3430 (Load range[N])
Bore range [mm]	8 to 70	10 to 60	10 to 50	10 to 45	8 to 130	_
Repetitive motion torque accuracy	±5%	±5%	±10%	±5%	_	±15% (trip load)
Backlash	None	None	Small	Minimal	None⁺¹	None
Reset method	Automatic	Automatic	External force (manual)	Automatic	Automatic	Automatic
Overload detection	TG Sensor	Limit switch	TG Sensor	Limit switch	Proximity switch, tachometer	TGA Sensor
Torque indicator	Yes	Yes	Yes	No*²	No	Yes
Exterior						

^{*1} Only for unidirectional operation.

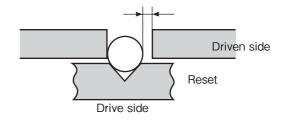
² Adjust the regulator pressure to adjust the torque.

The right mechanical type safety device for your particular needs is available. Using the chart below, select the device that is most right for your machines.

For machinery like positioning and indexing machines that require preciseness.

One position function			
TGB Series	Yes		
TGE Series	Yes		
TGX Series	Yes		
TGF Series	Yes		
TGM Series	Yes		
TGZ Series	Yes		
TGK Series	Yes		

One	position


Because of its unique construction, the drive and driven sides only mesh in one position. After tripping the Shock Guard resets and meshes in its original position.

Backlash			
TGB Series	Small		
TGE Series	Small		
TGX Series	No		
TGF Series	Minimal		
TGM Series	No		
TGZ Series	Small		
TGK Series	Minimal		

Repetitive motion torque accuracy			
TGB Series	±10%		
TGE Series	±5%		
TGX Series	±5%		
TGF Series	±5%		
TGM Series	±5%		
TGZ Series	±10%		
TGK Series	±5%		

Backlash

Connecting clearance between drive side and driven side at normal operation.

Repetitive motion torque accuracy

This represents the deviation caused by repeated trips.

For the machine that you want to automatically reset after removing overload after trip

TGB Series	
TGE Series	
TGX Series	Automatic
TGF Series	reset
TGM Series	
TGK Series	

Automatic reset

After overload is removed, the overload detection function is reset automatically by inching either the drive or driven side.

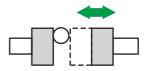
For the machine that you want to freely rotate after trip

TGZ Series	Complete		
TGK Series	release		

^{*} In cases where the air pressure is zero for the TGK series

Complete release

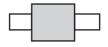
After tripping, this function completely eliminates transmission of the drive side rotation to the driven side. While in the case of an automatic reset mechanism, the overrunning of the drive side after tripping prevents reset shock. This complete release function is best suited for a high speed rotation axis.


Arbitrarily shutoff the rotary power transmission as an ON-OFF clutch

TGZ Series	Reset by external force
TGK Series	In cases where the air pressure is zero

ON-OFF

The ON-OFF function.


Arbitrarily transmit or shutoff torque by external force.

For the machine that is used in a highly humid environment

Sealed Construction

Sealed construction using O-ring. Under normal usage conditions it is not necessary to refill the grease.

Selection

As a safety device, the Shock Guard will be most effective if it is installed in the place nearest to where overload is thought to most likely occur on the driven machine.

For most situations, avoid using the Shock Guard with human transportation or lifting devices. If you decide to use a Shock Guard with these devices, take the necessary precautions to avoid serious injury or death from falling objects.

1. Setting trip torque

$$\begin{split} T_{\text{P}} &= T_{\text{L}} \times S.F = \frac{60000 \times P}{2\pi \cdot n} \times S.F \ | T_{\text{P}} = \frac{974 \times P}{n} \times S.F | \\ T_{\text{P}} &= Trip \ torque \ N \cdot m | kgf \cdot m | \\ P &= Transmittance \ power \ kW \\ N &= Trip \ N \cdot m | kgf \cdot m | kgf \cdot m | kgf \cdot m | \\ N &= Trip \ N \cdot m | kgf \cdot m | kgf \cdot m | \\ N &= Trip \ N \cdot m | kgf \cdot m$$

- (1) From the machine's strength and load, as well as other information, set the trip torque at the point where it should not go any higher.
- (2)When the limit value is not clear, calculate the rated torque by using the rpm of the shaft where the Shock Guard is installed and rated output power. Then, depending on the conditions of use, multiply by the service factor in Table 1.

Table 1

S.F	Operating conditions
1.25	In the case of normal start up/stop, intermittent operation
1.50	In the case of a heavy shock load or forward-reverse driving

2. When rpm is relatively high

When rpm is relatively high (more than 500r/m), or when load inertia is large, depending on the motor's start up torque, there is a chance the Shock Guard will trip. In this case, determine the inertia ratio and calculate the torque used in the Shock Guard during start up, then multiply it by the service factor and make this the trip torque.

$$K = \frac{I_L + I_t}{I_s} \left\{ K = \frac{GD_L^2 + GD_t^2}{GD_s^2} \right\} Tt = \frac{K \cdot T_S + T_L}{1 + K} Tp = SF \cdot Tt$$

K : Inertia ratio

 I_s : Drive side moment of inertia(kg·m²)

 $\{GD_{s}^{2}: Drive side GD(kgf \cdot m^{2})\}$

IL : Load side moment of inertia(kg·m²)

Notes for Design

- * When selecting the size based on the torque, ensure that the preset torque is not more than 80% of the upper limit of the torque capacity of the Shock Guard. The reason for this is to allow a margin for readjustment considering the decline in torque attributable to wear after many years of use.
- * When using an induction motor or a similar device as the drive motor, consider the starting torque when determining the preset torque. Also, for machines that generate large vibrations, give consideration to these vibrations when setting the torque since the Shock Guard is activated in response to a momentary overload and consequently seems to be activated at a torque less than the calculated torque.
- * When using the Shock Guard for an intermittent drive such as an indexer and the difference between the preset torque and the normal peak torque is small, transmission balls oscillate due to load fluctuation during operation, which causes machine vibration and abnormal wear of the inside of the Shock Guard. Therefore, set the torque to the highest value possible that is within a range that does not damage the machine.

 $\{GD^{2}_{L} : Load \ side \ GD^{2}(kgf \cdot m^{2})\}$

It : Shock Guard moment of inertia(kg·m²)

{GD²_t : Shock Guard GD²(kgf·m²)}

 T_s : Motor starting torque(N·m){kgf·m}

 T_t : Torque in Shock Guard during start up(N·m){kgf·m}

 $\begin{array}{ll} T_{\text{L}} & \text{: Load torque}(N \cdot m) \{ kgf \cdot m \} \\ T_{\text{P}} & \text{: Trip torque}(N \cdot m) \{ kgf \cdot m \} \end{array}$

S.F : Service factor

Note) Use the equivalent value to the shaft in which the Shock Guard is installed for each moment of inertia, GD² and torque value.

3. Precautions when deciding trip torque

Compared with load torque, if the torque used when starting up becomes large, the setting trip torque value also becomes large, causing a problem from the viewpoint of the overload protection device. (Compared with the load torque, the trip torque is too large.) In this case install it as close to the load side as possible.

4. Choosing the model number

Choose a model where the calculated trip torque is within the minimum to maximum setting range.

5. Verifying bore diameter

Verify that the shaft where the Shock Guard will be installed is in the possible range (refer to the dimensions table) of the bore diameter of the Shock Guard model you selected.

If the shaft diameter is larger than the possible bore range, select a model one size larger that uses a weak spring.

6. Confirming rpm

Confirm that the Shock Guard rpm used is within the maximum rpm value in this catalog.

* Driving method

When using the Shock Guard with a V pulley or timing pulley, confirm that the radial load caused by belt tension does not exceed the permissible load. Contact us if the load exceeds the permissible load.

* Coupling

Select the appropriate type according to your use conditions after checking whether the allowances are satisfied.

* Reset speed

The reset speed should be as low as possible. The appropriate reset speed depends on factors such as the inertia of the driven machine, elasticity of the drive machine, and selected torque of the Shock Guard, but 50 rpm or less is sufficiently low for the reset speed in most cases. If low speed reset is impossible, perform inching operations.

△Do not reset the main unit or shaft of the Shock Guard by turning it by hand. Doing so is dangerous.

Usable sprocket minimum number of teeth

For sprocket machining dimensions, refer to the description pages of each series.

TGB Series

Model No.	Sprocket minimum number of teeth								
Wodel No.	RS40	RS50	RS60	RS80	RS100	RS120	RS140	RS160	
TGB08-L,M,H	14	12	13(10)						
TGB12-L,M,H	16	13	13(11)						
TGB16-L,M,H	18	15	14						
TGB20-H	26	22	19	15	13	13(11)			
TGB30-L,H	32	26	22	18	15	13			
TGB50-L,M,H	45(43)	35	30	24	20	17			
TGB70-H	60(58)	48(47)	40	32(31)	26	24(22)			
TGB90-L,H		62	52	40	33	28	25	22	
TGB110-L,H		74	62	48	39	33	29	26	
TGB130-L,H		83	70	53	43	37	32	29	

^{*} The numbers of teeth in parentheses are not those of standard A-type sprockets. Whenever possible, use sprockets with a larger number of teeth.

TGE Series

⟨Type 1⟩

Model	Sprocket minimum number of teeth					
No.	RS35	RS40	RS50	RS60	RS80	
TGE17-1	18	14	12	_	_	
TGE25-1	25	20	17	15	12	
TGE35-1	32	25	20	18	14	
TGE50-1	_	31	26	22	17	

⟨Type 3⟩

Model	S	Sprocket minimum number of teeth						
No.	RS35	RS40	RS50	RS60	RS80			
TGE17-3	23	18	15	_	_			
TGE25-3	32	25	21	18	14			
TGE35-3	39	30	25	21	1 <i>7</i>			
TGE50-3	_	40	33	28	22			

TGM Series

Model No.	Sprocket minimum number of teeth								
Model No.	RS25	RS35	RS40	RS50	RS60	RS80	RS100	RS120	
TGM3	*30	22	17	15					
TGM6	*30	22	17	15					
TGM20	*34	24	19	16	14				
TGM60		*32	26	21	18	15			
TGM200			*37	30	26	20	17		
TGM400				*41	35	*27	24	20	
TGM800				*41	35	*27	24	20	

^{*} The numbers marked with * are not standard numbers of teeth.

TGZ Series

Model No.		Sprocket minimum number of teeth								
iviouei ivo.	RS25	RS35	RS41	RS40	RS50	RS60	RS80	RS100	RS120	RS80
TGZ20L,M,H	(51)	(35)	(28)	30(29)	24(23)	20	16	13	13	_
TGZ30L,M,H	(62)	(43)	(33)	35(33)	30(27)	24(23)	18	16	14	1 <i>7</i>
TGZ40L,M,H		(54)	(41)	45(41)	35(34)	30(24)	24(23)	19	16	1 <i>7</i>
TGZ50L,M,H		62	48	48	40(39)	35(33)	26	21	18	22

^{*} The numbers of teeth in parentheses are not those of standard A-type sprockets. Whenever possible, use sprockets with a larger number of teeth.

TGK Series

Model No.	Sprocket minimum number of teeth							
Model No.	RS35	RS40	RS50	RS60	RS80			
TGK20	30	24	20	17	_			
TGK30	37	29	24	20	16			
TGK45	50	38	32	27	21			

^{*} The above are the smallest possible installable sprockets. Sprocket transmissible power is not considered, so refer to TSUBAKI drive chain catalog for more information on sprocket selection and handling.

⁽Note) Determine the number of teeth after checking the transfer capacity of the chain.

⁽Note) Insert the joint link from the outside of the sprocket.

Maintenance

1. Shock Guard (TGB)

Lightly coat the balls and bearings with grease once per year or every 1,000 trips.

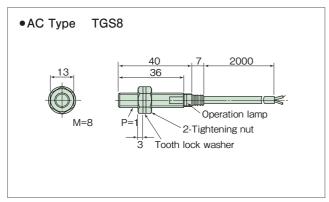
Grease

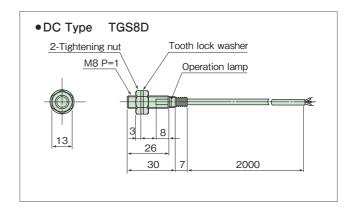
EMG Marketing	Showa Shell	Idemitsu	JX Nippon Oil & Energy	Cosmo Oil
Mobilux EP2	Alvania EP Grease 2	Daphne Eponex Grease EP 2	Epinoc Grease AP(N)2	Cosmo Dynamax EP Grease 2

2. Coupling portion(TGB20-C to TGB130-C)

Coat the roller chain and sprocket with grease once per month.
 Use the same grease for the Shock Guard.

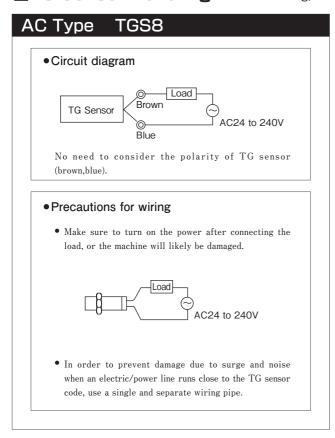
3. Sprocket portion

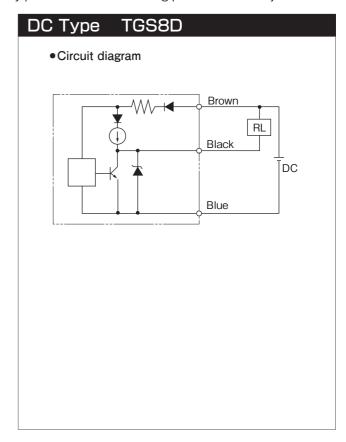

- · For more information on sprocket and roller chain maintenance, refer to TSUBAKI drive chain catalog.
- If operating with a sprocket and roller chain for a long period of time, even if the trip frequency and number of times is very low, it is possible for the sprocket to wear. Inspect the sprocket for wear on a regular basis. Refer to the TSUBAKI drive chain catalog for inspection procedures.

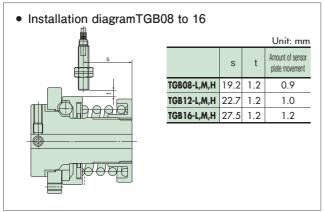

TG Sensor

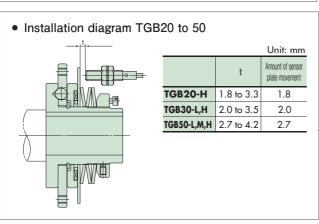
The TG Sensor is a Shock Guard specific proximity switch system overload detecting sensor. After detecting Shock Guard overload (movement of plate in the axis direction), the motor can be stopped and the alarm can be signaled. It is of course possible to install the TG Sensor on other series' and sizes as well.

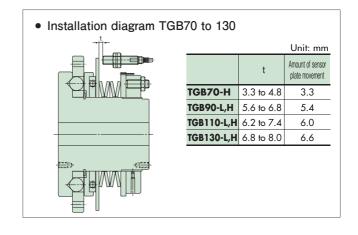
		AC Type	DC Type				
N	Model no.	TGS8	TGS8D				
Power	Rating	AC24 to 240V	DC12 to 24V				
supply voltage	Range to be used	AC20 to 264V(50/60Hz)	DC10 to 30V				
Currer	nt consumption	1.7mA and below(at AC200V)	13mA and below				
Control output (opening and closing capacity)		5 to 100mA	Max. 200mA				
Indicator lamp		Operation	Operation indicator				
Ambient or	perating temperature	$-25 \text{ to } + 70^{\circ}\text{C}$	(does not freeze)				
Ambient of	operating humidity	35 to 95% RH					
0	utput form	NC(When not detecting the sensor plate, or	utput opening and closing state is displayed)				
Оре	eration mode	_	Open collector				
Insulation resistance		More than 50M Ω (at DC50V megger) In	between the energized part and the case				
Mass		Approx. 45g (with 2m code)					
Residual voltage		Refer to characteristic data	Less than 2.0V (load current 200mA/code length 2m)				


■ Dimensions Diagram

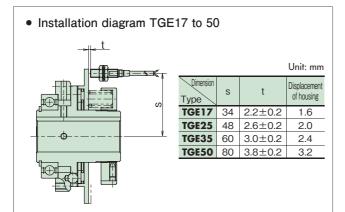


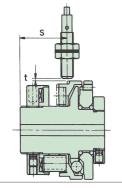

■TG Sensor Handling * Do not swing, excessively pull or strike the detecting portion with an object.



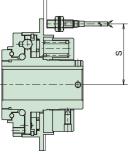


Overload detection(TG Sensor handling)

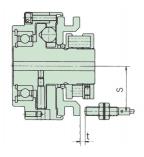

- · The detecting distance of a TG Sensor is 1.5mm. Set the Shock Guard at non-trip condition with the dimensions (s, t) in the chart below.
- Install the TG Sensor with the Shock Guard at the tripped position. Then, while rotating the Shock Guard by hand, verify that the TG Sensor is functioning (LED at the side is lighting) and there is no interference with the plate. Finally, reset the Shock Guard.



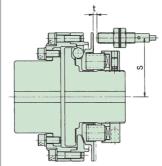
Shock Guard


• Installation diagram TGX10 to 70

			Unit: mm
Dimension Type	S	t	Displacement of plate
TGX10	29.9	1.2	1.4
TGX20	28.3	1.2	1.6
TGX35	29.5	1.2	2.0
TGX50	35.6	1.2	2.6
TGX70	34.5	1.2	3.5

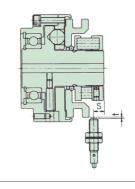

Note) The TG sensor can only be attached to the Shock Guard in the radial direction.

• Installation diagram TGF20 to 90


			Unit: mm
Dimension Type	S	t	Displacement of housing
TGF20	46	2.2±0.2	1.6
TGF30	60	2.6 ± 0.2	2.0
TGF45	78	3.0 ± 0.2	2.4
TGF65	100	3.0 ± 0.2	2.4
TGF90	136	3.8 ± 0.2	3.2

• Installation diagram TGZ20 to 50

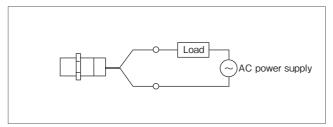
			Unit: mm
Dimension Type	S	t	Displacement of plate
TGZ20	40	4.2 to 5.6	4.1
TGZ30	50	4.8 to 6.2	4.7
TGZ40	66.5	6.0 to 7.4	5.9
TGZ50	79	7.1 to 8.5	7.0


• Installation diagram TGX10-C to 70-C

		'	Unit: mm
Dimension Type	S	t	Displacement of plate
TGX10-C	36.5	2.1 to 2.8	1.3
TGX20-C	45	2.4 to 3.1	1.6
TGX35-C	59	2.7 to 3.4	1.9
TGX50-C	83	3.2 to 3.9	2.4
TGX70-C	105	4.1 to 4.8	3.3

Note) Regarding the TG sensor to be mounted on a coupling type, attach this sensor horizontally as shown in the figure on the left. Contact us for details on attachment in the radial direction.

• Installation diagram TGZ20 to 50


		'	Unit: mm
Dimension Type	S	t	Displacement of plate
TGZ20	9.5	1.2	4.1
TGZ30	10.2	1.2	4.7
TGZ40	15	1.2	5.9
TGZ50	12.2	1.2	7.0

Selecting overload and wiring information (AC type for TGS8)

Connecting to a power source

Make sure to connect via load. A direct connection will damage the internal elements.

Using a metal pipe to prevent malfunction/damage

In order to prevent malfunction or damage, insert the proximity switch code inside a metal pipe when it runs close to the power cable.

Surge protection

The TG Sensor has built-in absorbing circuits, but when the TG Sensor is used near a device such as a motor or arc welder where a large surge occurs, make sure to insert a surge absorber such as a varister in the source.

• Influence of consumption (leakage) current

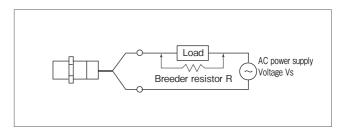
Even when the TG Sensor is OFF, in order to keep the circuits running, a small amount of current flows as current consumption. (Refer to the Consumption (leakage) Current graph) Consequently, because there is a small amount of voltage on the load, it may cause the occurring load to malfunction when resetting. Before using the sensor, confirm that this voltage is less than the load reset voltage. As well, when using the relay as load, be aware that due to the relay's construction when the leakage current is OFF, a buzz will sound.

When power supply voltage is low

When power supply voltage is smaller than AC48V and load current is less than 10mA, the output residual voltage when the TG Sensor is ON will become large, and the load residual voltage will become large when it is OFF. (Refer to the Load Residual Voltage Characteristics graph.) Take note of operating voltage load when using a relay, etc.

· When load current is small

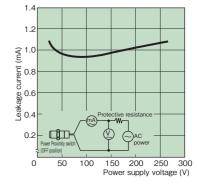
When load current is less than 5mA, load residual voltage becomes large in the TG Sensor. (Refer to the Residual Voltage Load Characteristics graph.) In this situation, connect the breeder resistance and load in a parallel formation like in the diagram below. If load voltage is above 5mA make residual voltage less than load reset voltage. The breeder resistace value and allowable power are calculated using the below calculation. To be on the safe side, it is recommended to use $20k\Omega$ 1.5W (3W) and above at AC100V, $39k\Omega$ 3W (5W) and above at AC200V.

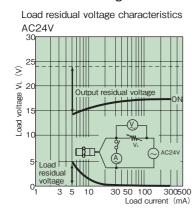

* When the effect from heat build up becomes a problem, use the wattage in () and above.

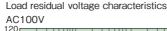
$$\mathsf{R} \leqq \frac{\mathsf{V}}{\mathsf{5}-\mathsf{i}} \; (\mathsf{k} \Omega)$$

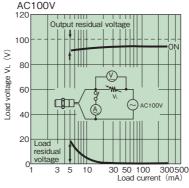
$$P \le \frac{V^2 s}{5 - i} \text{ (mW)}$$

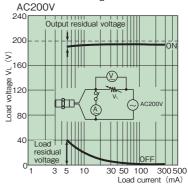
P: Breeder resistance W number (As a practical matter, use the number of W several times or more)

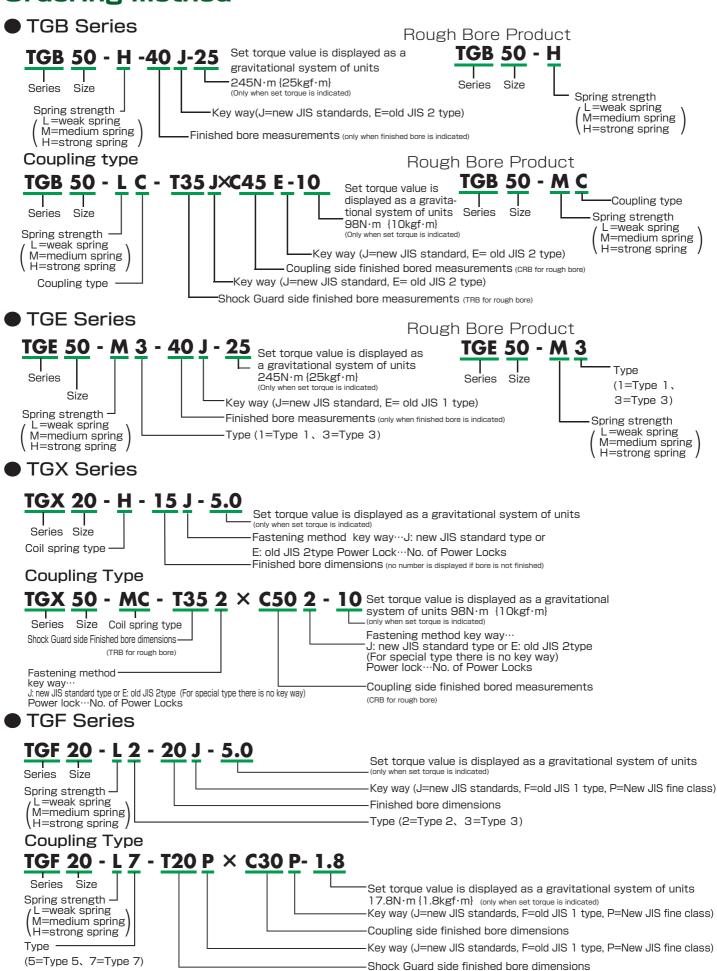

i: Load current (mA)

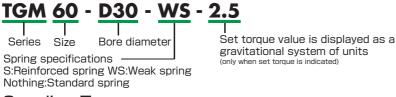

The large inrush current load

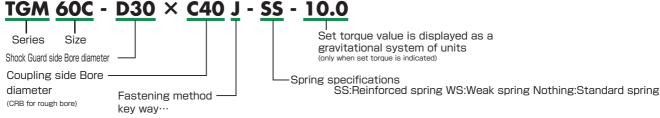

A load with large inrush current such as a lamp or motor can cause damage or deterioration to open c lose elements of the sensor. Inthis type of situation, use the sensor via a relay.


• Consumption (leakage) Current Characteristics

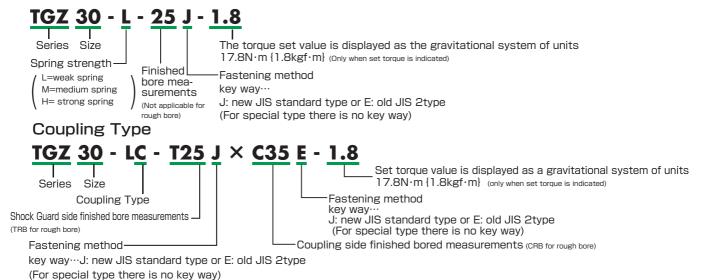

Load Residual Voltage Characteristics



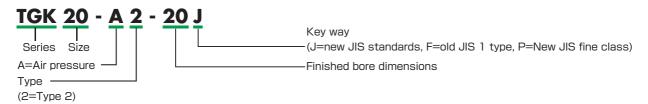

Load residual voltage characteristics


Ordering method

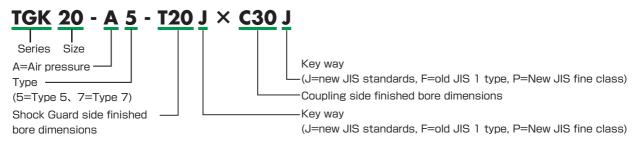
TGM Series



Coupling Type



J: new JIS standard type or E: old JIS 2type (For special type there is no key way)


TGZ Series

TGK Series

Coupling Type

Shock Guard TGB Series

Features

Easy to operate and reasonably priced. This standard model can be used with a broad range of applications.

Wide variety of sizes available

From 0.294N \cdot m {0.03kgf \cdot m} to 7154N \cdot m {730kgf \cdot m}, 58 sizes are available.

Automatic reset

After removing the cause of overload, the TGB Series automatically re-engages by rotating the drive side.

One position type

The balls and pockets, which transfer the torque, are engaged only in one position because of the unique structure.

Easy torque adjustment

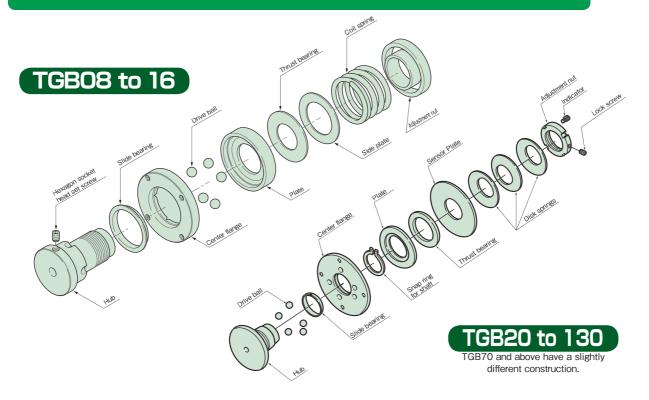
By simply turning the adjustment nut (bolts), trip torque can be easily adjusted.

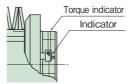
Compact and precise

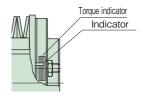
(TGB08 to 16) Ideal for use in compact motors, robots, and compact precision machines.

Non-backlash

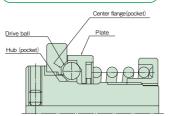
TGB08 to 12 only. However, backlash may occur in the coupling portion for the coupling type.




Construction and Operating Principles


TGB08,12,16

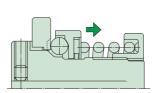
TGB20,30,50



TGB70,90,110,130

TGB08 to 16

During normal operation (engagement)

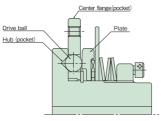


Torque transmission is carried out using several balls. The non-symmetric arrangement of the balls and pockets allows only one engagement position.

As well, there is no backlash due to non-clearance engagement between the retained and pressured balls and pockets.

Torque is transmitted from the center flange pockets) \rightarrow drive balls \rightarrow hub (pockets) \rightarrow shaft. (As well as the opposite)

During overload (trip)

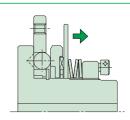


When the TGB Series trips due to overload, the ball pops out of the center flange pocket and it slides between the plate and center flange.

TGB20 to 50

The principle of operation is the same for TGB70 to TGF130.

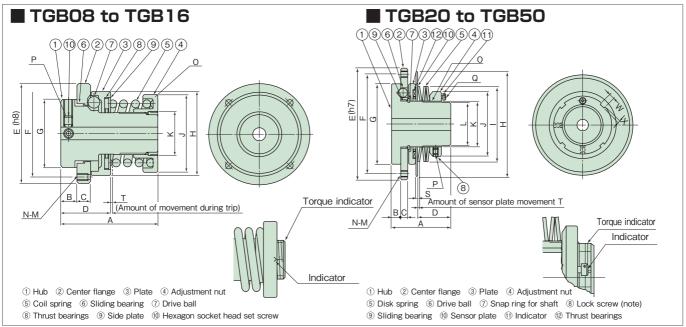
During normal operation (engagement)



Torque transmission is carried out using several balls. The non-symmetric arrangement of the balls and pockets allows only one engagement position.

Torque is transmitted from the center flange → drive balls → the bearings, shub (pockets) → shaft. (As well as the opposite)

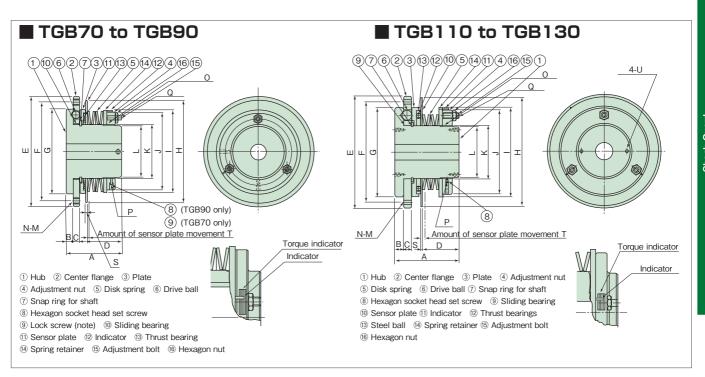
When it trips the ball poppocket and replace and hub when tripping portion is entirely the bearings, shaft. (As well and smoothly.


During overload (trip)

When it trips due to overload, the ball pops out of the hub pocket and rolls between the plate and hub.

When tripping, the rotational portion is entirely received by the bearings, so it rotates lightly and smoothly.

Transmissible Capacity/Dimensions


Note: One lock screw for fastening the adjustment nut is included with the Shock Guard. After setting to the optimal torque, tighten either lock screw with the torque amount given below. Lock screw size: M5···3.8N·m|38.7kgf·cm|

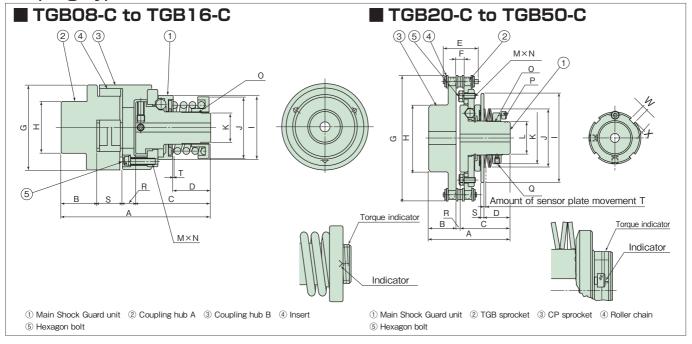
Unit : mm

Model No.	rc	torque ange 1·m	_ M	aximum r/min	Sprir	ng color	Roug bore diame * 1		nimum oore ameter	Maximum bore diameter	A	В	С	D	Е	F P.C.D	G	Н	1
TGB08-L		to 1.4			_	ellow													
TGB08-M		to 2.1		1200	Е	Blue	5		6	8	39	6.5	5	20	40	34	26	33	_
TGB08-H		to 2.9			-	range													
TGB12-L		to 2.9				ellow													
TGB12-M		to 4.9		1000		Blue	6		7	12	47	8	6	23.5	48	40	32	40	
TGB12-H		to 5.8				range													
TGB16-L		to 4.9				ellow													
TGB16-M		to 7.8		900		Blue	7		8	16	56	8.5	8	27.7	58	50	39	48	_
TGB16-H		to 11.	76		1	range							-						
TGB20-H		to 44		700		range	8		9	20	47	7.5	5.7	25	90	78	62	82	54
TGB30-L		to 54	7	500	_	ellow	12		14	30	60	9.5	7	33	113	100	82	106	75
TGB30-H	30-H 54 to 167 59 to 147					range													
				200		ellow Blue	22		0.4	50	81	1 4 5	8.5	44.0	140	142	100	150	116.7
TGB50-M TGB50-H				300		range	22		24	30	81	14.5	8.5	44.8	160	142	122	150	110./
ТОВОО-П	170	10 337			Oi	unge													
Model No.	J	K	L	М	Ν	O scre diame × pite	ter d	screw amete length	r diam	eter S	5	T	W		Х	Snap ring size Y	Mass kg ^{*2}		of inertia ^{*2}
TGB08-L																			·
TGB08-M	29.5	15	_	M 3	3	M15×	1 N	13×4	- 1	- -	-	0.9	_		_	_	0.14	0.0	025
TGB08-H																			
TGB12-L																			
TGB12-M	35	20	_	M 4	3	M20×	1 \ \ \	14× 6	-	- -	-	1	_		_	_	0.24	0.0	065
TGB12-H																			
TGB16-L	ļ , ,						.												
TGB16-M	46	25	_	M 4	3	N25×	1.5	15 × 6	-	- -	-	1.2	_		_	_	0.44	0.0	18
TGB16-H TGB20-H	48	32	30	M 5	4	M32×	1 E A	15 × 6	1445	< 8 2	,	1.8	5	2	,	32	0.9	0.0	<i>E</i> 0
	48	32	30	M S	4	M32×	1.5 //	13 × C	M4 ×	8 2	2	1.8	3		-	32	0.9	0.0	38
TGB30-L TGB30-H	65	45	42.5	M 6	6	M45×	1.5 N	15 × 6	M4×	< 10 2	2	2	6	2	2.5	45	2	0.2	
TGB50-H																			
TGB50-L	98	75	70	M 8	6	M75×	2 1	\5 × 10) M// ~	<14 3	,	2.7	8	2	3.5	75	5.9	1.2	1
TGB50-M	7.0	/ 3	/ 0	741 0	J	141/ 5 ^	_ '\	10 A IC	/ /////	. 14	<i>'</i>	۷./	0		,.5	/ 3	J.7	1.2	'
וייינפטי																			

^{*1.} All the models are in stock.

^{2.} Mass and moment of inertia are based on the bores' maximum diameters.

Unit : mm

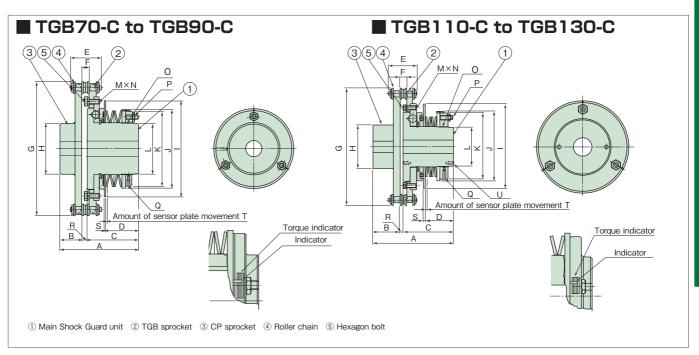

	Model No.	Set to rang N·	ge	Maximum r/min	Disk sp cold		Rough bore diameter * 1	Minimun bore diameter	bore	Α	В	С	D	Е	F P.C.D	G	Н	I
	ТGВ 70-Н	294 to	1080	160	Oran	nge	32	35	70	110	14.5	12	68.5	220	200	170	205	166
	TGB 90-L	441 to	1320	100	Yello	ow	40	44	00	1.57	0.5	00	00.7	205	07.5	00/	000	010
	TGB 90-H	931 to	3140	120	Oran	nge	42	44	90	157	25	22	88.6	295	265	236	290	213
	TGB110-L	686 to	1960	100	Yello	ow	52	<i>5.4</i>	110	105	20	0.5	105	255	205	007	2.45	0.70
	TGB110-H	1570 to	5100	100	Oran	nge	52	54	110	195	30	25	105	355	325	287	345	278
Ī	TGB130-L	1176 to	3038	80	Yello	ow	60	62	130	220	35	27	130	400	360	319	390	316
	TGB130-H	2650 to 7154		80	Oran	nge	60	02	130	220	33	2/	130	400	300	319	390	310
										_								
	Model No.	J	K	L	М	Z	O sc diam × pi	eter di	screw ameter length	Q screv diamete × lengtl	r S	Т	dic	screw imeter length	Snap ring size Y	Mass kg *2	Momen	t of inertia ²
	Model No.	J 1 <i>57</i>	K 110	L 106	M M10	N 6	diam	eter di itch ×	ameter length	diamete	r S	3.3	dic ×	meter	ring	kg	Momen	
		157	110	106	M10	6	diam × pi	eter di itch ×	ameter length 5×10	diamete × lengtl M10×2	8 3	3.3	dic ×	imeter ength	ring size Y	kg *2 17	Momer ×10	6.3
-	ТGВ 70-Н						diam × pi	eter di itch ×	ameter length 5×10	diamete × lengtl M10×2	8 3	3.3	dic ×	imeter length	ring size Y	kg *2	Momer ×10)²kg·m²
-	TGB 70-H TGB 90-L	157	110	106	M10	6	diam × pi M110	eter distch × 0×2 M 0×2 M	ameter length 5×10 10×20	diamete × length M10×2 M16×3	8 3 5 5.5	3.5	dic × 3 4 M8	imeter length — 3×16	ring size Y	kg *2 17	Momer × 10	6.3 33.8
-	TGB 70-H TGB 90-L TGB 90-H	157	110	106	M10	6	diam × pi	eter distch × 0×2 M 0×2 M	ameter length 5×10 10×20	diamete × lengtl M10×2	8 3 5 5.5	3.3	dic × 3 4 M8	imeter ength	ring size Y	kg *2 17	Momer × 10	6.3
-	TGB 70-H TGB 90-L TGB 90-H TGB110-L	157	110	106	M10	6	diam × pi M110	overeter divided with the control of	ameter length 5×10 10×20 12×20	diamete × length M10×2 M16×3	8 3 5 5.5	3.5	dic	imeter length — 3×16	ring size Y	kg *2 17	Momer × 10	6.3 33.8

 $^{^{\}star}1.$ The models written in bold letters are in stock, and those in small letters are made to order.

^{2.} Mass and moment of inertia are based on the bores' maximum diameters.

Transmissible Capacity/Dimensions

Coupling Type



Unit: mm

A4 . L.I.N.I.		torque	• N	Naximum	Spring	Sho	ock Gu	uard	C	Coupli	ng		-		-	_	_			
Model No.		ange √m		r/min	color	Rough bore	Minimum bore diameter	Maximum bore diameter	Rough bore diameter	Minimum bor diameter	e Maximum bore diameter	Α	В	С	D	Е	F	G	Н	I
TGB08-LC	0.29	to 1.	47		Yellow	ulullicici	Ululliciti	uunuu	dialitica	Unilluid	ulullicioi									
TGB08-MC	0.78	3 to 2.	16	1200	Blue	5	6	8	_	_	15	80	20.6	39	19	_	_	44.5	24	33
TGB08-HC	1.17	7 to 2.	94		Orange															
TGB12-LC	0.68	3 to 2.	94		Yellow															
TGB12-MC	1.96	to 4.	9	1000	Blue	6	7	12	_	_	20	88	19.9	47	23.5	_	_	53.6	32	40
TGB12-HC		1 to 5.			Orange															
TGB16-LC		7 to 4.			Yellow															
TGB16-MC	2.94	1 to 7.	84	900	Blue	7	8	16	_	_	25	112	27	56	28.3	_	_	64.3	38	48
TGB16-HC		3 to 11.			Orange															
TGB20-HC	9.8	to 44		700	Orange	8	9	20	12.5	14	42	76	25	47	25	32.6	7.4	117.4	63	82
TGB30-LC) to 54		500	Yellow	12	14	30	18	20	48	93	28	60	33	40.5	9.7	146.7	73	106
TGB30-HC		1 to 16		300	Orange	12	14	30	10	20	40	75	20	00	55	40.5	7.7	140.7	/ 3	100
TGB50-LC		to 14			Yellow															
TGB50-MC		to 41		300	Blue	22	24	50	18	20	55	126	40	81	44.8	51	11.6	200.3	83	150
TGB50-HC	196	to 53	9		Orange															
Model No.	J	K	L	M×N×No pieces	of O screet diamet	er dic	screw imeter ength	Q scr diame × leng	eter	R	S	T	W)	⟨ r	Coupling	۷o.	Mass kg	× 10 ⁻²	of inertia
TGB08-LC TGB08-MC TGB08-HC	29.5	15	_	M3×12ℓ	×3 M15×1		_	_		7.2	13.2	0.9	_	-	-	L075	A	0.235	0.0	05
TGB12-LC TGB12-MC TGB12-HC	37	20	_	M4×16ℓ	×3 M20×1		_	_		7.9	13.2	1	_	-	_	L090	A	0.38	0.0	123
TGB16-LC TGB16-MC TGB16-HC	46	25	_	M4×20 ℓ	.×3 M25×1	.5	_	_		10.2	18.8	1.2	_	-	_	L100	A	0.673	0.0	324
TGB20-HC	54	48	30	M5×12ℓ	×4 M32×1	.5 M	4× 8	M5×	6	4	2	1.8	5	2		RS40-2	26	2.5	0.3	13
TGB30-LC	75	65	42.5	146×14 0	V6 MAEV1	5 14	4×10	MEN	4	5	2	2	4	2	5	DC E O '	26	4.8	0.0	10
TGB30-HC	/3	03	42.5	M6×16ℓ	×6 M45×1	IM	4 × 10	M5×	0	5			6	2.3	ر	RS50-2	20	4.8	0.9	40
TGB50-LC TGB50-MC TGB50-HC	116.7	98	70 5	M8×20ℓ	×6 M75×2	2 M	4×14	M5×	10	5	3	2.7	8	3.5	5	RS60-3	30 1	12.2	4.4	3

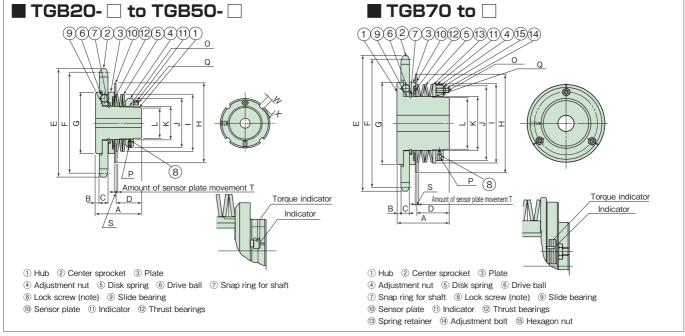
^{*1.} All the models are in stock.

^{2.} Mass and moment of inertia are based on the bores' maximum diameters.

Unit: mm

Model No.	Set torque range	Maximum	Spring	Sh	ock Gud	ard		Coupling	g	Α	В	_	D	F	F	G	Н	
Model No.	N·m	r/min	color	Rough bore diameter	Minimum bore diameter	Maximum bore diameter	Rough bore diameter	Minimum bore diameter	Maximum bore diameter	Υ	ם)	D	_	'		"	
TGB 70-HC	294 to 1080	160	Orange	32	35	70	28	30	75	165	45	110	68.5	64.8	15.3	283.2	107	205
TGB 90-LC	441 to 1320	120	Yellow	42	44	90	33	35	103	242	80	1.57	88.6	79.5	10.2	394.4	147	290
TGB 90-HC	931 to 3140	120	Orange	42	44	70	33	33	103	242	00	137	00.0	70.5	10.2	374.4	14/	270
TGB110-LC	686 to 1960	100	Yellow	- 52	54	110	38	40	113	303	100	195	105	00 2	21.0	473.4	157	345
TGB110-HC	1570 to 5100	100	Orange	32	34	110	30	40	113	303	100	173	103	77.2	21.7	4/ 5.4	137	343
TGB130-LC	1180 to 3038	80	Yellow	- 60	62	130	53	55	145	365	120	230	130	127.3	29.1	534.2	197	390
TGB130-HC	2650 to 7154	30	Orange	00	02	130	33	33	143	303	120	230	130	12/.3	27.1	334.2	177	370

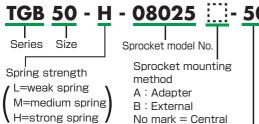
Model No.	J	K	L	M×N×No. of pieces	O screw diameter × pitch	P screw diameter × length	Q screw diameter × length	R	S	Т	U screw diameter × length	Sprocket	Mass kg	Moment of inertia
TGB 70-HC	166	157	106	M10×25 ℓ ×6	M110×2	M10×28	M 5×10	10	3	3.3	_	RS80-32	32.0	22.43
TGB 90-LC	213	203	124	M12×35ℓ×8	M130×2	M16×35	M10×20	5	5.5	5.4	M 0×14	RS100-36	71.1	117.32
TGB 90-HC	213	203	124	M12×33 £ ×6	MISUXZ	MIO × 33	M10 × 20	5	3.3	3.4	M 0×10	K3100-30	/ 1.1	117.32
TGB110-LC	278	266	155	M16×45ℓ×6	M160×3	M16×45	M12×20	8	7	6	1410×20	RS120-36	130.5	314.15
TGB110-HC	2/0	200	155	M10×43 Ł × 0	W100×3	M10×43	MIZAZU	0	/	0	MIUXZU	K3120-30	130.5	314.13
TGB130-LC	316	304	184	M16×50 ℓ ×8	M190×3	M20×60	M16×30	15	7	6.6	M12×24	RS160-30	202.3	632.66
TGB130-HC	310	304	104	M10 \ 30 L \ 8	W1170×3	MZU × 60	M10 × 30	13	/	0.6	M12 × 24	K3100-30	202.3	032.00


^{*1.} The models written in bold letters are in stock, and those in small letters are made to order.

Mass and moment of inertia are based on the bores' maximum diameters.

Transmissible Capacity/Dimensions

With Sprocket TGB


Note: One lock screw for fastening the adjustment nut is included with the Shock Guard. After setting to the optimal torque, tighten either lock screw with the torque amount given below. Lock screw size: M5···3.8N·m[38.7kgf·cm] M8···16N·m[163kgf·cm] Unit: mm

Model No.	Set torque range N·m	Maximum r/min	Sprocket specifications	Disk spring color	Rough bore diameter	bore	Maximum bore diameter	Α	В	С	D	Е	F P.C.D	G	Н	I
TGB20-H-□	9.8 to 44	700	RS40-22T	0	8	9	20	47	5.9	7.2	25	96	89.24	62	82	54
IOBZO-II-	7.01044	700	RS40-27T	Orange	0	7	20	4/	J.7	/ .2	23	116	109.4	02	02	54
TGB30-L-□	20 to 54	500	RS60-19T	Yellow	12	14	30	60	4.8	11.6	33	126	115.74	82	106	75
TGB30-H-□	54 to 167	300	RS60-24T	Orange	12	14	30	80	4.0	11.0	33	156	145.95	02	106	73
TGB50-L-	69 to 147		RS80-20T	Yellow								176	162.37			
TGB50-M-□	137 to 412	300		Blue	22	24	50	81	8.42	14.5	44.8			122	150	116.7
TGB50-H-□	196 to 539		RS80-25T	Orange								216	202.66			
TGB70-H-□	294 to 1080	160	RS100-22T	Oranaa	32	35	70	110	8.9	17.5	68.5	240	223.10	170	205	166
IGB/U-H-	274 101 000	100	RS100-26T	Orange	32	33	/0	110	0.9	17.5	00.5	281	263.40	170	203	100

Model No.	J	К	L	O screw diameter ×pitch	P screw diameter xlength	Q screw diameter xlength	S	Т	W	Х	Snap ring size Y	Mass kg	Moment of inertia × 10 ⁻² kg·m ²
TGB20-H-□	48	32	30	M 32×1.5	M5× 6	M 4× 8	2	1.8	5	2	32	0.94	0.255
10020 11	40	32	30	W 32 × 1.3	W3 / 0	M 4 × 0		1.0		2	52	1.15	0.486
TGB30-L-□	65	45	42.5	M 45×1.5	M5× 6	M 4×10	2	2		2.5	45	2.21	1.06
TGB30-H-□	05	45	42.5	M 45 ^ 1.5	MIS × 0	M 4 ~ 10			6	2.3	45	2.78	2.07
TGB50-L-												6.35	6.10
TGB50-M-□	98	75	70	M 75×2	$M5 \times 10$	M 4×14	3	2.7	8	3.5	75		
TGB50-H-□												7.66	10.7
т G В70-Н-□	157	110	106	M110×2	M5×10	M10×28	3	3.3			110	17.8	29.4
106/0-п-□	13/	110	106	MITO×2	M3 × 10	M10 × 28	3	3.3	_	_	110	19.9	42.5

- *1. All products have a short delivery time.
- 2. Specify the preferable sprocket size.
- 3. Mass and moment of inertia are based on the bores' maximum diameters.
- 4. Sprocket specifications go in the box at the end of the model number. As well, refer to the below chart for Model No.

Model No.

Set torque value is displayed as a gravitational system of units 294N·m {30kgf·m}

(Only when set torque is indicated) Key way

(J=new JIS standard, E= old JIS 2 type)

Finished bore measurements (only when finished bore is indicated)

Sprocket Indication Method

		•	
Mod	del No.	Sprocket specifications	Indication of Model No.
TO	B20	RS40-22T	04022
16	DZU	RS40-27T	04027
-	B30	RS60-19T	06019
16	7 B3U	RS60-24T	06024
TO	B50	RS80-20T	08020
16	DOU	RS80-25T	08025
TO	B70	RS100-22T	10022
16	7 D/U	RS100-26T	10026

Finished Bore Shock Guard TGB/Coupling Type TGB-C

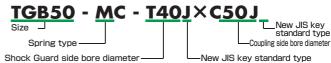
Finished bore products can be made for quick delivery

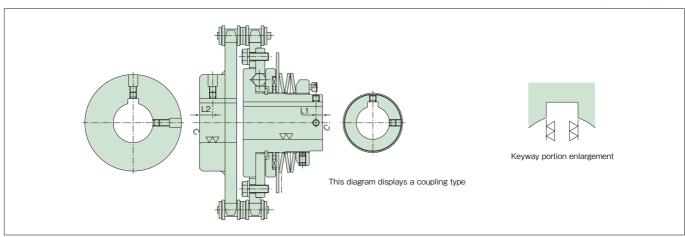
■ Bores and keyways are already finished before delivery.

TGB20-TGB70 and TGB20-C-TGB70-C finished bore is standard

Finished Bore Dimension Chart

Unit: mm


Shock Gu	uard TGB	Finished bor	e dimensions
Shock Guard Model No.	Coupling Type Model No.	Shock Guard side	Coupling side (Coupling Type only)
TGB20	TGB20-C	9,10,11,12,14,15,16,17,18,19,20	14,15,16,17,18,19,20,22,24,25,28,29,30,32,33,35,36, 38,40,42
тGВ30	TGB30-C	14,15,16,17,18,19,20,22,24,25,28,29,30	20,22,24,25,28,29,30,32,33,35,36,38,40,42,43,45,46,
TGB50	TGB50-C	24,25,28,29,30,32,33,35,36,38,40,42,43,45,46,48,50	20,22,24,25,28,29,30,32,33,35,36,38,40,42,43,45,46,48,50,52,55
TGB70	TGB70-C	35,36,38,40,42,43,45,46,48,50,52,55,56,57,60,63,65, 70	30,32,33,35,36,38,40,42,43,45,46,48,50,52,55,56,57,60,63,65,70,71,75
Deli	very	ExJapan 4	weeks by sea


Model No.

Shock Guard

Coupling Type

Shock G	uard TGB	Shock G	uard Side		ng Side Type only)
Shock Guard Model No.	Coupling Type Model No.	Set screw	Set screw position L1	Set screw	Set screw position L2
TGB20	TGB20-C	2-M4× 4	4	2-M4× 4	8
TGB30	TGB30-C	2-M5× 5	5	2-M5× 5	10
TGB50	TGB50-C	2-M6× 6	6	2-M6× 6	12
TGB70	TGB70 TGB70-C		6	2-M8×12	15

^{1.} Set screws are located at 2 positions, on the keyway and 90° CW from it.

■ Bore Diameter and Keyway Specifications

- · Bore diamter tolerance is as follows: ϕ 18 and below ······0 to +0.021mm
 - ϕ 19 and above ······H7
- · The keyway is new JIS (JIS B 1301-1996)
- · Set screws are included in the delivery

Bore diameter	Chamfer dimensions
ϕ 25 and below	C0.5
ϕ 50 and below	C1
ϕ 51 and above	C1.5

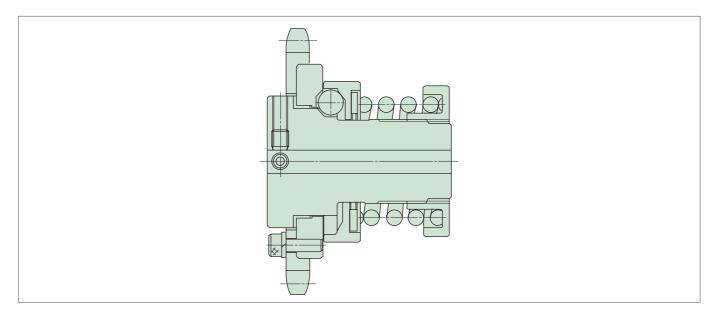
Shock Guard

• Roller chain and sprocket selection

For more information on roller chain and sprocket selection and handling, refer to the TSUBAKI drive chain catalog.

Sprocket specifications

Sprockets are hardened.

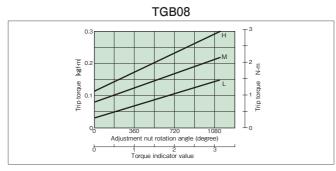

Sprocket lubrication

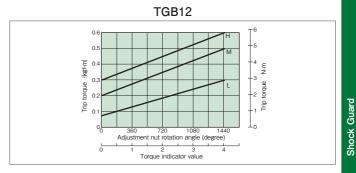
- For more information on sprocket lubrication, refer to the TSUBAKI drive chain catalog.
- If the Shock Guard is lubricated in an oil bath or by the rotary plate or forced pump, there is a possibility that the indicator and name sticker may come off.

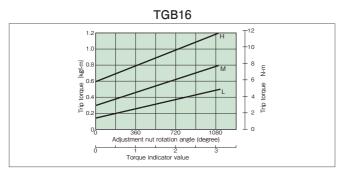
• Use of V pulley and timing pulley

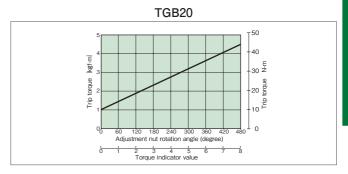
 Confirm that the radial load caused by belt tension does not exceed the permissible load.

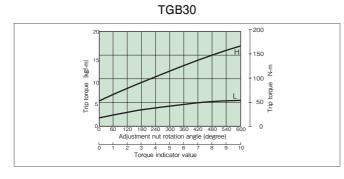
Installation example

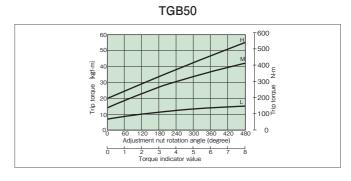

Handling

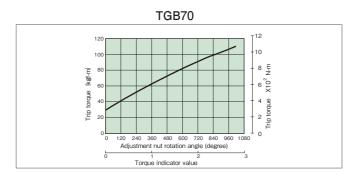

1. Setting trip torque

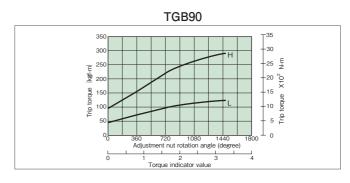

- (1)TGB Shock Guards are all set at the "0" point (minimum torque value) for delivery. Confirm that the torque indicator is set at "0" when you receive the Shock Guard. (Refer to the diagrams for each size)
- (2)For the TGB70 to 130, loosen the three hexagon locknuts for adjusting bolts.
 - (The adjustment nuts of TGB08-50 can be turned as is.)
- (3)From the "Tightening Amount Torque Correlation Chart" (next page), find the adjustment nut's (bolt) tightening angle equivalent to the predetermined trip torque, and tighten them. Set at 60° toward the determined tightening value, then install to the machine and conduct a trip test. Gradually tighten and set at optimum trip torque. Each product's trip torque does not always correspond
- with the value listed in the "Tightening Amount Torque Correlation Chart", so use them only as a rough guide.
- (4)For the TGB20 to 50, tighten one lock screw for the adjustment nut.
 - For the TGB70 to 130, use a hexagon nut to lock it. (The TGB08 to 16 adjustment nut is locked with a nylon coating.)
- (5)Do not turn the adjustment nut (bolt) more than the torque indicator's maximum value. Doing so will put it in a locked position, and there will be no leeway for the disk spring to bend when tripping. (TGB08-16 uses a coil spring)

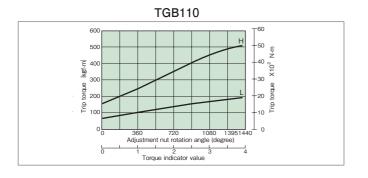

SAFCON

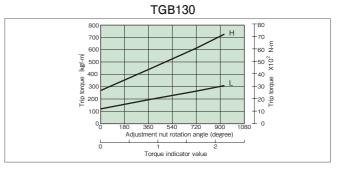

2. Tightening Amount-Torque Correlation Chart

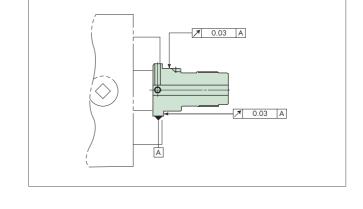




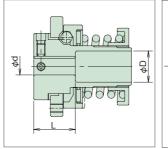


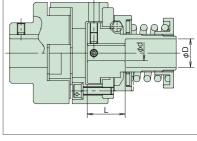




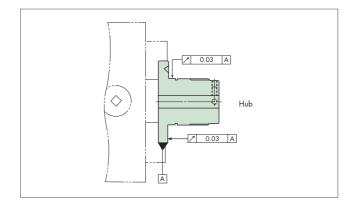


3. Bore finishing


TGB08 to 16


- The hub's materials are made up of a surface-hardened iron based sintered alloy.
- (1) Loosen the adjustment nut and disassemble all components. Make sure not to get any dust or dirt on the components.
- (2) Chuck the hub flange's outside diameter and center the hub portion. The hub's material is a surface-hardened iron based sintered alloy, so we recommend the cutting tool be made of a hard material (JIS 9-20, K-01).
- (3) Keyway machining should be carried out directly below the set screw tap.
- (4) After bore finishing is completed and when reassembling the Shock Guard, make sure to coat the drive ball and thrust bearings with grease.
- (5) For bore finishing, refer to the table and drawings below and make stepped bores.

Model No.	Bore diameter (φ d)	Bore length (L mm)	Counterbore diameter (ϕ D)				
TGB08 TGB08-C	ϕ 6 and above ϕ 8 and below	20mm	φ11				
T0D10	ϕ 7 and above less than ϕ 10	20mm	φ15				
TGB12 TGB12-C	ϕ 10 and above less than ϕ 12	30mm					
	φ12	Total length	N/A				
	ϕ 8 and above less than ϕ 10	20mm	φ15				
TGB16 TGB16-C	ϕ 10 and above less than ϕ 12	30mm	φισ				
	ϕ 12 and above ϕ 16 and below	Total length	N/A				



TGB08 to 16

TGB08C to 16C

TGB20 to 130

- The hub has been thermally refined.
- (1) Loosen the adjustment nut and disassemble all components. Remove both the Snap ring for shaft and the center plate. Make sure not to get any dust or dirt on the components.
- (2) Chuck the hub flange's outside diameter and center the hub portion.
- (3) Tapping for the set screws should be machined so they are spaced 90° from each other around the keyway.
- (4) After bore finishing is completed and when reassembling the Shock Guard, make sure to coat the drive ball and thrust bearings with grease.

4. Resetting

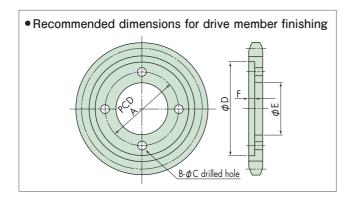
As it is an automatic reset system, just re-starting the drive side of the motor, etc., can automatically reset it.

- (1) When the Shock Guard trips due to overload, stop the rotation and remove the cause of the overload.
- (2) When resetting, reset (re-engage) with input rpm at less than 50r/min or by inching the motor.
- ⚠ To avoid injury, do not reset the Shock Guard main unit or the shaft by hand.
- (3) A distinct clicking sound is made when the drive ball settles in its pocket.

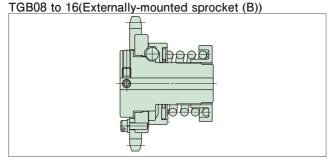
Drive member selection and manufacture

A sprocket, gear and pulley can be installed in the Shock Guard to act as the drive member (center member). When selecting and manufacturing a drive member, refer to the precautions listed below.

(1)Use the outer diameter of the center flange as the spigot facing, and fix the drive member with bolts. Verify the diameter of the Shock Guard's spigot facing with that of the drive member.


Each spigot is as listed in the chart below.

Unit : mn							
Model No.	Spigot diameter	Model No.	Spigot diameter				
TGB08-L,M,H	40(h8)	TGB50-L,M,H	160(h7)				
TGB12-L,M,H	48(h8)	TGB70-H	220(h7)				
TGB16-L,M,H	58(h8)	TGB90-L,H	295(h7)				
TGB20-H	90(h7)	TGB110-L,H	355(h7)				
TGB30-L,H	113(h7)	TGB130-L,H	400(h7)				


(2)Center flange installation

· TGB08 to 16

The center flange's installation tap hole is penetrated. If the bolt's length is longer than the center flange, it will make contact with the plate. Make sure it does not stick out on the plate side.

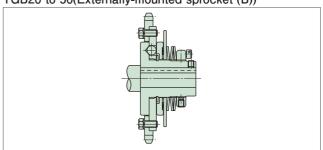
Installation example

Lock screw/tightening torque reference chart

Hexagon socket head screw	Tightening torque N·m{kgf·cm}
M5	3.8 {38.7}
M8	16 {163}

· TGB20 to 130

The center flange's installation tap hole is penetrated. If the the bolt's length is too long there may be contact with the sensor plate. The recommended bolt screw lengths are listed in the chart below.


Unit: r								
Model No.	Bolt screw length	Model No.	Bolt screw length					
TGB08-L,M,H	4	TGB50-L,M,H	9 to 11					
TGB12-L,M,H	5	TGB70-H	13 to 15					
TGB16-L,M,H	7	TGB90-L,H	23 to 25					
TGB20-H	6B20-H 6 to 7 TGB110-L,H		26 to 28					
TGB30-L,H	8 to 10	TGB130-L,H	28 to 30					

(3)Refer to the chart below for drive member bolt diameters (JIS B1001-1985).

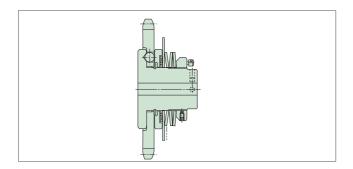
●Bolt bore diameter JIS B1001 — 1985 Unit: m								it : mm	
	Nominal screw diameter	3	4	5	6	8	10	12	16
	Bolt bore diameter	3.4	4.5	5.5	6.6	9	11	13.5	17.5

c :	Drive member finishing dimensions					
Series name	Α	В	С	D	Е	F
TGB08-L,M,H	34	3	3.4	40 _{H7}	28	3
TGB12-L,M,H	40	3	4.5	48 _{H7}	33	3
TGB16-L,M,H	50	3	4.5	58 _{H7}	41	3
TGB20-H	78	4	5.5	90 _{H7}	64	3
TGB30-L,H	100	6	6.6	113н7	84	4
TGB50-L,M,H	142	6	9.0	160 _{H7}	124	5
TGB70-H	200	6	11	220 _{H7}	172	5
TGB90-L,H	265	8	13.5	295н8	240	5
TGB110-L,H	325	6	17.5	355н8	292	5
TGB130-L,H	360	8	17.5	400 _{H8}	325	5

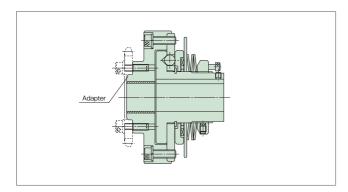
TGB20 to 50(Externally-mounted sprocket (B))

Precautions:

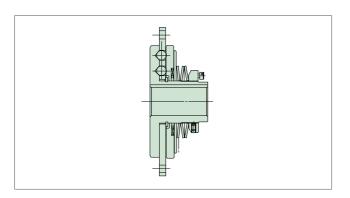
When re-tightening the lock screws that are once removed, make sure to take the following precautions:


- Confirm that the plug tip has not been removed. If a lock screw is used
 with a tipless plug, the hub's thread may be damaged or the hub's pocket
 may get jammed.
- Confirm that the plug tip has not been heavily damaged. If a lock screw is used with a heavily damaged plug tip, the hub's thread may be damaged.
- *If 1. or 2. is found to be the case, exchange the damaged parts with new ones.

Special specifications


1. With sprocket type

We accept orders for with the sprocket the type that are not included among our standard products. Contact TEM to help you with your selection.


2. Adapter specifications(A)

It is convenient to use sprockets and pulleys with a small outside diameter. Contact TEM for more information on the sprocket and pulley you will install.

3. Forward-reverse type

Depending on Shock Guard rotation direction, the trip torque set value can be changed. Contact TEM for more information.

Shock Guard

MEMO			

Features

Applicable to small-diameter sprockets and wide pulleys.

Easy torque adjustment

You only have to adjust the nut height to adjust the torque.

Quick boring

Products with standard bores are delivered in a short period of time.

Automatic reset

Thanks to automatic re-engagement, you only have to turn the drive side after removing the causes of overload.

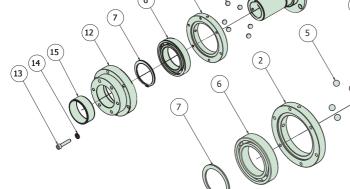
One position type

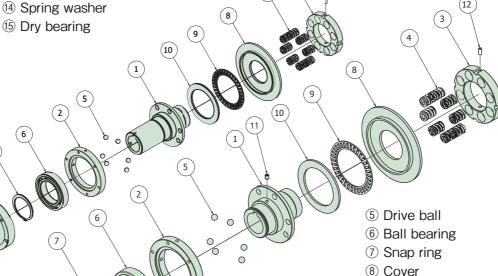
The balls and pockets, which transfer the torque, are engaged only in one position because of the unique structure.

	TGE
Type 1	Applicable to small- diameter sprockets and wide pulleys.
Туре З	A general-purpose type on which A type sprockets and pulleys can be directly mounted.

Type 1 With sprocket

Type 3


Type 3 With sprocket


Construction and Operating Principles

TGE17-1 to 50-1 (Type 1)

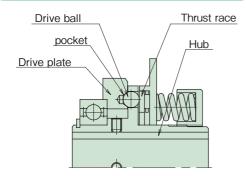
- 1) Hub
- 2 Drive plate
- 3 Adjustment nut
- (4) Coil spring
- ⑤ Drive ball
- 6 Ball bearing
- The state of th
- ® Cover
- 9 Thrust bearing 10 Thrust race

- (1) Hexagon socket head set screw
- 12 Mounting adapter
- 13 Hex cap bolt
- 15 Dry bearing

1) Hub

2 Drive plate

3 Adjustment nut


4 Coil spring

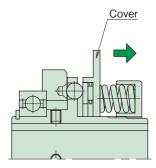
- 9 Thrust bearing
- ① Thrust race
- (1) Hexagon socket head set screw
- 12 Hexagon socket head set screw

TGE17-3 to 50-3 (Type 3)

TGE17 to 50

During normal operation (engagement)

The TGE series transfers driving force from the hub to the drive plate on the output side via drive balls (and vice versa).

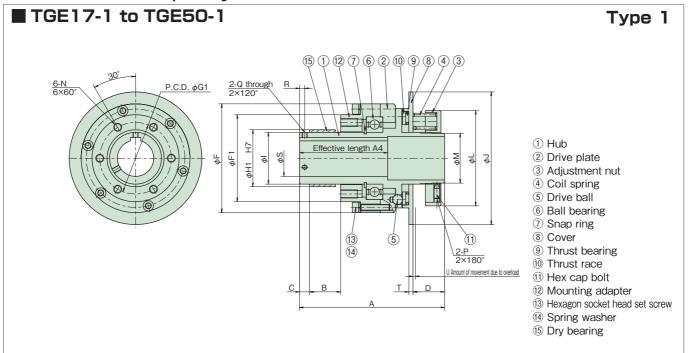

Bolt a sprocket or timing pulley directly to the drive plate.

The hub flange has several holes to hold the drive balls.

There are pockets on the drive plate on the output side, and the drive balls are pushed by coil springs via the thrust race to be fitted into the pockets to transfer the driving force.

If an overload occurs, the drive balls push the thrust race toward the coil springs and come out of the pockets of the drive plate while rotating to release the driving force.

During overload (trip)



Then, the cover moves toward the coil springs. Therefore, it is easy to stop the drive source automatically after the occurrence of an overload by detecting the amount of movement of the cover using a TG sensor or a similar device.

Resetting procedure

If you restart the operation after the occurrence of an overload, the drive balls automatically return to their positions within one revolution. If you continue to rotate the TGE series after the occurrence of an overload, the TGE series is repeatedly reset. Therefore, detect overloads using a TG sensor or a similar device and shutdown the drive source immediately.

1		
Jnit	•	mm
O		

	C.11.	A.A	Coil			S									G1	
Model No.	Set torque range N·m	Max. rpm	spring number		Minimum bore diameter	JIS keyway for max. bore dia.	Half keyway for max. bore dia.*3	A	A4*4	В	U	D	F	F1	P.C.D.	H1*5
TGE17-L1	1 to 5		2													
TGE17-M1	2 to 10	870	4	_	12	15	1 <i>7</i>	87	30	22.6	7.9	16.9	57	42	35	28
TGE17-H1	4 to 20		8													
TGE25-L1	5 to 25		2													
TGE25-M1	10 to 50	540	4	_	12	22	25	110	50	30.1	9.6	21	84	65.5	53	44
TGE25-H1	20 to 100		8													
TGE35-L1	20 to 100		2													
TGE35-M1	40 to 200	430	4	_	1 <i>7</i>	32	35	140	85	30.1	9.6	30.5	105	84	69	55
TGE35-H1	80 to 400		8													
TGE50-L1	30 to 200		3													
TGE50-M1	60 to 400	310	6	_	27	48	50	165	115	48	9.6	30.5	145	116	94	75
TGE50-H1	120 to 700		12													

Model No.	ı	J	L	М		diameter.		R*6	Т	U	Mass kg* ⁷	Moment of inertia	Allowable radial load N	Dry bearing
					×length	×length	alameter				צט	KB.W	radial load IN	ŕ
TGE17-L1														
TGE17-M1	25	70	56	26	$M4 \times 8$	$M4 \times 10$	M4	4	2.5	1.6	0.84	0.0011	6100	#70B2520
TGE17-H1														
TGE25-L1														
TGE25-M1	40	98	70	36	$M5 \times 9$	$M4 \times 10$	M5	5	3	2.0	1.9	0.0021	12200	#70B4025
TGE25-H1														
TGE35-L1														
TGE35-M1	50	128	92	48	M8×16	M6×10	M5	5	4	2.4	3.5	0.0054	12200	#70B5020
TGE35-H1														
TGE50-L1														
TGE50-M1	70	168	115	68	M8×12	M6×15	M5	5	5	3.2	7.5	0.0215	34300	#70B7040
TGF50-H1														

- *1. Contact us for details on use at speeds higher than the maximum speed.
- 2. Only center bore processing is available.
- 3. The half keyway dimension is the maximum bore diameter when the keyway depth is limited.
- 4. Contact us if an effective keyway length longer than the A4 dimension is required.
- The H1 dimension is the machining dimension of the inner diameter of pulleys and sprockets (machining dimension tolerance of inner diameter H7).
- Standard stocks are not processed. Dimensions are for reference only (products are delivered with a setscrew inserted upon request for processing).
- 7. Mass and moment of inertia are based on the bores' maximum diameters.

Note) When in stalling a pulley or sprocket, use high-tensile bolts (G10.9 or higher) and determine the length carefully so that the bolts are not buried deeper than the mounting tap depth N.

Limitation of keyway depth

Model No.	S bore diameter	Keyway width	Keyway depth
TGE17	16 – 1 <i>7</i>	5	1.8
TGE25	24 – 25	7,8	2
TGE35	34-35	10	2.4
TGE50	49 – 50	12,14	2.2

■ TGE17-3 to TGE50-3 Type 3 6-N 6×60° P.C.D. ϕ G 2-Q through $2\times120^{\circ}$ Ηø Γφ φΓ 1) Hub 2 Drive plate 3 Adjustment nut 4 Coil spring (12) ⑤ Drive ball 2-P 2×180° 6 Ball bearing The state of th Amount of movement due to overload ® Cover В 9 Thrust bearing 10 Thrust race 11 Hexagon socket head set screw 12 Hexagon socket head set screw

Unit: mm

		C-11		A.4		Coil				S									G
	Model No.		que range ·m		x. rpm min *1	spring	Rough bore		JIS keyway for				e diamete	er A	В	С	D	F	P.C.D.
				,		number	diamter*2	diameter	bore dia.		(Τ	oleranc	e: H7)*3						
	TGE17-L3		o 5			2							17						
	TGE17-M3		o 10	9	900	4	_	12	12 17		12	12 15		47	9	6	16.9	57	50
	TGE17-H3	4 t	o 20			8													
	TGE25-L3	5 t	o 25			2													
	TGE25-M3	10 t	o 50	9	900	4	10	12	25		20	20 22		60	13	9	21	84	75
Ī	TGE25-H3	20 t	o 100			8													
Ī	TGE35-L3	20 t	o 100			2													
Ī	TGE35-M3	40 t	o 200	7	750	4	15	1 <i>7</i>	35		25	25 30 35		80	18	13.5	30.5	105	95
	TGE35-H3	80 t	o 400			8													
Ī	TGE50-L3	30 t	o 200			3													
Ī	TGE50-M3	60 t	o 400	5	570	6	25	27	50		40	45	50	95	20	15	30.5	145	130
	TGE50-H3	120	to 700			12													
Ī						N scre	DAY P	screw											
	Model No.	Н	J	L	М	diami			Q screw diameter*4		R*4	Т	U	Mass kg*⁵	Moment of ine kg · m ^{2*5}		vable load N	Dry be	aring
						×leng	gth X	length	alameter	ameter				Kg	KB - III	ladiai	lodd IN		
Ī	TGE17-L3																		
Ī	TGE17-M3	42	70	56	26	$M4 \times$	8 M	4×10	M4	1.	5	2.5	1.6	0.56	0.0010	3.	400	#690	5ZZ
Ī	TGE17-H3																		
	TGE25-L3																		
	TGE25-M3	62	98	70	36	$M5 \times$	10 M	4×10	M5	2	0	3	2.0	1.3	0.0016	7.	500	#690	8ZZ
	TGE25-H3																		
	TGE35-L3																		
Ī	TGE35-M3	80	128	92	48	M6×	14 M	5×10	0 M6		6	4	2.4	2.6	0.0037	12	400	#601	OZZ
Ī	TGE35-H3								7410										
Ī	TGE50-L3																		
	TGE50-M3	110	168	115	68	M8×	17 M	5×15	M8	3	1.5	5	3.2	5.1	0.0142	23	200	#601	4ZZ

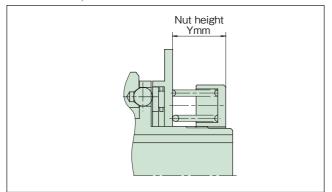
^{*1.} Contact us for details on use at speeds higher than the maximum speed.

TGE50-H3

Only center bore processing is available.

^{3.} The keyway dimension of a product with a standard bore complies with JIS B 1301, and the keyway width tolerance is Js9.

^{4.} Standard stocks are not processed. Dimensions are for reference only.

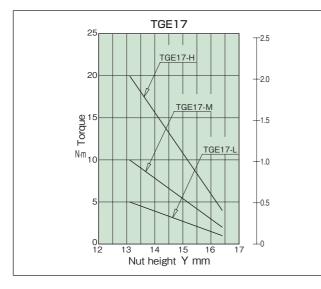

^{5.} Mass and moment of inertia are based on the bores' maximum diameters.

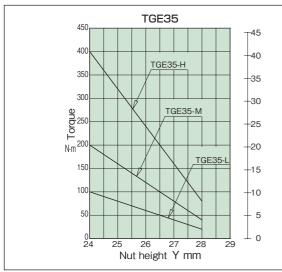
Note) When in stalling a pulley or sprocket, use high-tensile bolts (G10.9 or higher) and determine the length carefully so that the bolts are not buried deeper than the mounting tap depth N.

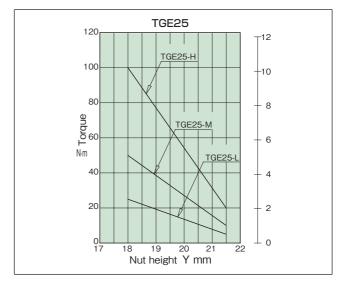
Products with a standard bore are delivered with a shaft-securing setscrew inserted. If you will not use the setscrew to secure the shaft, be sure to remove the setscrew from the hub (screw the setscrew to make it penetrate and come out of the hole).

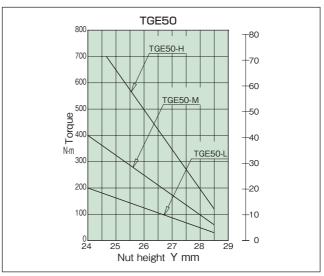
Torque adjustment

Read the nut height that corresponds to the required torque from the torque correlation charts and tighten the torque adjustment nut to that height (refer to the figure below).
 To tighten the torque adjustment nut, loosen the two setscrews, hook a hook spanner (sold separately, refer to the table on the right) on the notch in the periphery of the nut, and then turn the nut.




Hook spanner wrench


Size	TGE25	TGE35	TGE50
Spanner No.	FK-0070	FK-0092	FK-0105


2. When the torque is determined, write down the torque on the nameplate so that you can easily set the torque to the previous value even after an overhaul. If you mark matchmarks on both the nut and the edge of the hub, you can reset the torque more precisely.

Torque Correlation Chart

SAFCON

MEMO		

Shock Guard TGX Series

Features

Non-backlash. Provides superb rigidity during normal operation. Ideal for applications that require highly accurate positioning.

Highly accurate trip

The lost motion during trip is very small.

Non-backlash

Due to its innovative ball and wedge construction (PAT.), there is almost no backlash.

Coupling function

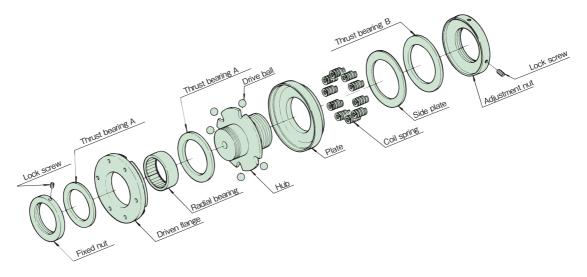
For the coupling, the ball and wedge mechanism absorbs the angle, parallel and axial displacement misalignment.

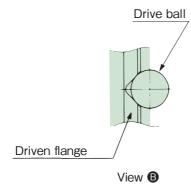
Easy torque adjustment

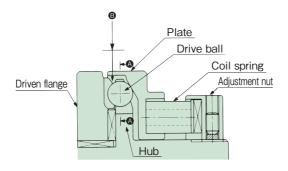
Just by turning the adjusting nut, trip torque can be freely adjusted.

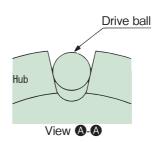
One position

The unique assembly of the TGX Series means the ball and wedge configuration engages in only 1 position.





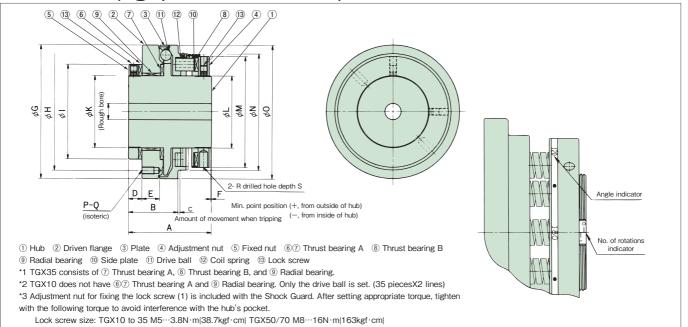



TGX Series

Construction and Operating Principles

Ball and Wedge Mechanism

Torque transmission is transmitted from the hub \rightarrow drive ball \rightarrow driven flange. (As well as the reverse direction.)

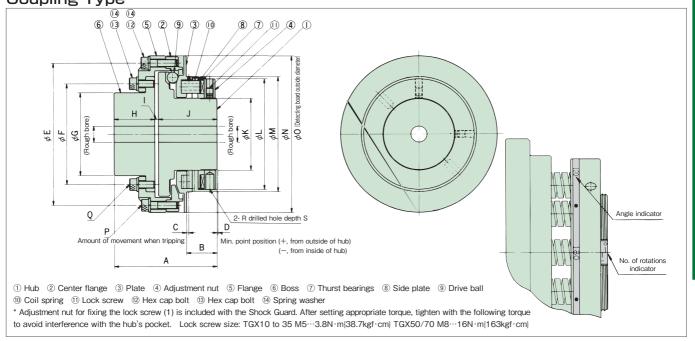

Due to the force of the coil spring, the drive ball is retained in between the hub and driven flange, and the contact portion between the plate and the drive ball are tapered, and the clearance between the drive balls and V-shape retaining portions is always zero. (View A-A) In addition, because of the 2 points contact of drive balls with the driven flange at V-shaped pocket, there is no backlash. (View B) This mechanism is a ball and wedge mechanism (PAT.).

During overload the drive balls pop out from their pockets and start rolling.

Because of this not sliding but all rolling mechanism, the friction torque when idling is extremely small and it is a highly durable mechanism. Reset is carried out by an automatic reset system. As operation is resuming, the drive ball resets to its pocket.

As well as the TGB Series, the non-symmetric arrangement of the 5 drive balls and pockets allows only one engagement position, and there is no phase shift.

Shock Guard (high precision TGX Series)



Shock Guard Model No.	Set Torque range N·m	Max. *r/min	Coil spring color × number	Rough bore diamter	Min. bore diameter	Max. bore diameter	Α	В	C amount of movement during trip	D	E	F min. point position	G h7	H PCD	I	
TGX10-L	1.7 to 6.4		Yellow×3													
TGX10-M	5.4 to 15	1400	Red×3	7	9	15	53	22	1.4	7.5	6.6	+0.3	62	54	42	
TGX10-H	11 to 29		Red×6													
TGX20-L	6.5 to 24		Yellow×6													
TGX20-M	13 to 34	1100	Red×3	8.5	10	25	64	35	1.6	10	13.4	+0.7	86	74	60	
TGX20-H	25 to 68		Red×6													
TGX35-L	23 to 68		Red×5		14											
TGX35-M	43 to 98	800	Green×5	12		35	68	37.5	.5 2.0	11	11.6	- 0.5	107	88	70	
TGX35-H	87 to 196		Green×10													
TGX50-L	45 to 118		Red×5													
TGX50-M	90 to 196	600	Green×5	18	20	55	92	54.8	2.6	15	19.5	+ 0.3	148	130	105	
TGX50-H	176 to 392		Green×10													
TGX70-L	127 to 363		Red×8													
TGX70-M	265 to 510	480	Green×8	23	25	25	70	98	61	61 3.5	15	19.2	+ 1.0	185	164	135
TGX70-H	392 to 784	1	Green×12							15						

Shock Guard Model No.	K Screw diameter x pitch	L Screw diameter x pitch	М	N	0	Р	Q screw diamter × length	R	S	*Mass kg	* Moment of inertia ×10 ⁻² kg·m ²
TGX10-L TGX10-M TGX10-H	M 25×1.5	M 30×1.5	56	58	61.8	4	M 4× 6	5	10	0.75	0.0293
TGX20-L TGX20-M	M 40×1.5	M 40×1.5	70	73	86	6	M 5× 8	5	10	1.67	0.134
TGX35-L TGX35-M	M 50×1.5	M 55×1.5	88	91	107	6	M 6× 7	6	10	2.51	0.333
TGX50-L TGX50-M TGX50-H	M 80×1.5	M 80×1.5	123	129	148	6	M 8×13	9	17	7.03	1.83
TGX70-L TGX70-M TGX70-H	M100×2.0	M100×2.0	148	153	185	6	M10×13	10	18	11.4	4.88

- *1. All the models are in stock.
- 2. Instantaneous stop is not possible, TGXZ Series is recommended. (Refer to page 77)
- 3. Mass and moment of inertia are based on the bores' maximum diameters.
- 4. Maximum bore diameter is with key installation. In case of Power-Lock installation, refer to p 48.

Coupling Type

Coupling Type	Set Torque range	Max.	Coil spring	Sho	ck Gua	ırd	C	oupling			В		D min.	Е	F	-					
Model No.	N·m	*r/min	color × number	Rough bore diameter	Minimum bore diameter	*Maximum bore diameter	Rough bore diameter	Minimum bore diameter	*Maximum bore diameter	Α	В	С	point position	PCD	PCD	G	Н				
TGX10-LC	1.5 to 5.4		Yellowx3																		
TGX10-MC	4.6 to 13	700	Red×3	7	9	15	7	9	19	69	24	1.3	+ 0.3	62	42	33	25				
TGX10-HC	9.3 to 25		Red×6																		
TGX20-LC	5.2 to 19		Yellowx6																		
TGX20-MC	9.8 to 27	550	Red×3	8.5	10	25	8.5	10	35	84	24	1.6	+ 0.3	89	66	55	35				
TGX20-HC	21 to 55		Red×6																		
TGX35-LC	19 to 57		Red×5																		
TGX35-MC	36 to 84	400	Green×5	12	14	35	12	14	50	88	24	1.9	- 0.5	113	83	70	35				
TGX35-HC	74 to 167		Green×10																		
TGX50-LC	40 to 98		Red×5																		
TGX50-MC	81 to 176	300	Green×5	18	20	55	5 18	20	60	114	34	2.4	+ 0.9	158	112	92	45				
TGX50-HC	167 to 343		Green×10																		
TGX70-LC	118 to 323		Red×8																		
TGX70-MC	235 to 461	240	Green×8	23	23	23	23	23	25	70	23	25	80	124	36	3.3	+ 0.6	200	145	116	50
TGX70-HC	353 to 696		Green×12		23 25	25					124										

Coupling Type Model No.	1	J	K Screw diamter × pitch	L	М	N	0	P screw diameter ×length	Q screw diameter xlength	R	S	* Mass kg	* Moment of inertia ×10 ⁻² kg·m ²	Allowable angular misalignment(deg.)	Allowable parallel misalignment	Allowable shaft direction displacement
TGX10-LC																
TGX10-MC	2	42	M 30×1.5	56	_	74	74	M 4×18	M 4×10	5	10	1.07	0.0555	0.6	0.1	±0.5
TGX10-HC																
TGX20-LC																
TGX20-MC	3	46	M 40×1.5	70	_	98	98	M 5×20	M 5×12	5	10	2.38	0.231	0.6	0.1	±0.5
TGX20-HC																
TGX35-LC																
	3	50	M 55×1.5	88	_	125	125	M 6×25	M 6×15	6	10	3.92	0.663	0.6	0.1	±0.5
TGX35-HC																
TGX50-LC																
TGX50-MC	4	65	M 80×1.5	123	128	174	174	M 8×32	M 8×20	9	17	10.9	3.35	0.6	0.1	±0.6
TGX50-HC																
TGX70-LC																
TGX70-MC	4	70	M100×2.0	148	152	218	218	M10×22	M10×38	10	18	16.3	8.93	0.6	0.1	±0.7
TGX70-HC													3.76			

^{*1.} All the models are in stock.

^{2.} Instantaneous stop is not possible, TGXZ Series is recommended. (Refer to page 77)

^{3.} Mass and moment of inertia are based on the bores' maximum diameters.

^{4.} Maximum bore diameter is with key installation. In case of Power-Lock installation, refer to p 48.

Shock Guard TGX·Coupling Type TGX-C with Finished Bore

Finished bore products can be made for quick delivery

■ Bores and keyways are already finished before delivery.

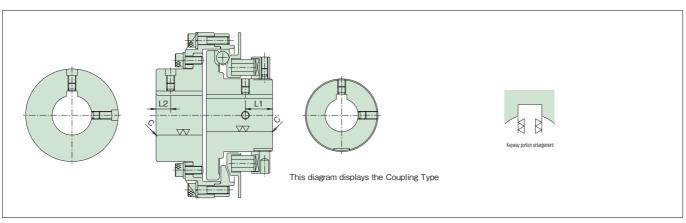
The finished bores for TGX10 to TGX70 and TGX10-C to TGX70-C are standard.

Finished Bore Dimension Chart

Unit: mm

Shock G	uard TGX	Bore di	mensions
Shock Guard Model No.	Coupling Type Model No.	Shock Guard Side	Coupling Side (Coupling Type only)
TGX10	TGX10-C	(10),(11),12,14,15	10,11,12,14,15,16,17,18,19
TGX20	TGX20-C	(14),(15),(16),(17),18,19,20,22,24,25	10,11,12,14,15,16,17,18,19,20,22,24,25,28,29,30,32, 33,35
TGX35	TGX35-C	(14),(15),(16),(17),18,19,20,22,24,25, 28,29,30,32,33,35	14,15,16,17,18,19,20,22,24,25,28,29,30,32,33,35,36, 38,40,42,43,45,46,48,50
TGX50	TGX50-C	20,22,24,25,28,29,30,32,33,35,36,38,40,42,43,45,46, 48,50,52,55	20,22,24,25,28,29,30,32,33,35,36,38,40,42,43,45,46, 48,50,52,55,56,57,60
TGX70	TGX70-C	25,28,29,30,32,33,35,36,38,40,42,43,45,46,48,50,52, 55,56,57,60,63,65,70	25,28,29,30,32,33,35,36,38,40,42,43,45,46,48,50,52, 55,56,57,60,63,65,70,71,75,80
Deli	ivery	EXJapan 4	weeks by sea

^{1.} Finished bore dimensions with () at Shock Guard side are applied only for Shock Guard Coupling.


Model No.

Shock Guard

Coupling Type

Shock G	Shock Guard TGX			ide	Coupling side (Coupling Type only)			
Shock Guard Model No.	Coupling Type Model No.	Bore diameter	Set screw	Set screw position L1	Bore diameter	Set screw	Set screw position L2	
TGX10	TGX10-C	ϕ 15 and below	2-M4×4	21	ϕ 19 and below	2-M4×4	8	
TGX20	TGX20-C	ϕ 23 and below	2-M5×5	20.5	φ 35 and below	2-M5×5	12	
TOXZO		φ 24,25	$2-M4\times4$	20.5	φ 35 dila below	2 1413 / 3	12	
TGX35	TGX35-C	ϕ 35 and below	$2-M6 \times 6$	20.5	ϕ 50 and below	$2-M6\times6$	11	
TGX50	TGX50 TGX50-C		2-M6×6	24.5	ϕ 60 and below	2-M6×6	13	
TGX70	TGX70 TGX70-C		2-M6×6	25	ϕ 80 and below	2-M6×6	15	

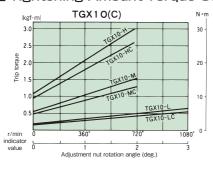
^{1.} Set screws are located at 2 positions, on the keyway and 90° CW from it.

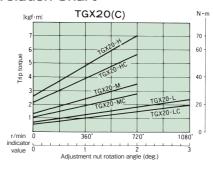
■ Bore diameter and keyway specifications

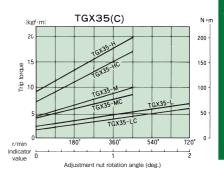
- · Bore diameter tolerance is as follows: ϕ 18 and below·····0 to +0.021mm ϕ 19 and above·····H7
- Keyway is New JIS (JIS B 1301-1996)
 "standard".
- · Set screws are included in the delivery.

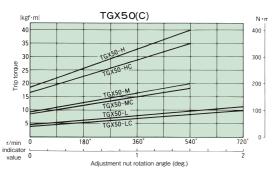
Bore diameter	Chamfer dimensions
ϕ 25 and below	C0.5
ϕ 50 and below	C1
ϕ 51 and above	C1.5

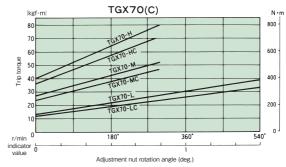
For Shock Guard Couplings, only the TGX10-C has a different keyway phase between the Shock Guard side and the coupling side.


TGX Series


Handling

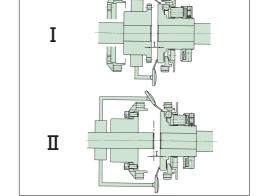

1. Setting trip torque


- (1) TGX Shock Guards are all set at the "0" point (minimum torque value) for delivery. Confirm that the torque indicator is set at "0" when you receive the Shock Guard. (Refer to pages 43, 44)
- (2) From the "Tightening Amount-Torque Correlation Chart" (below), find the adustment nut's (bolt) tightening angle equivalent to the predetermined trip torque and tighten them. The torque indicator is at every 60° pitch. Set at 60° toward the determined tightening value, then install to the machine and conduct a trip test. Gradually tighten
- and set at optimum trip torque. Each product's trip torque does not always correspond with the value listed in the "Tightening Amount Torque Correlation Chart", so use these values only as a rough guide.
- (3) After setting torque, screw the lock screw to adjustment nut.
- (4) Do not turn the adjustment nut (bolt) more than the torque indicator's maximum value. Doing so will put it in a locked position, and there will be no leeway for the disk spring to bend. Refer to page 32 for the lock screws' tightening torque and precautions.


■ Tightening Amount-Torque Correlation Chart

Centering method

(1) Centering method I


- a .Separate the flange from the hub and center flange.
- b .Move the flange, then set to the I dimensions shown in
- c . Fix a dial gauge to the hub (coupling side hub), then measure the run-out of the hub's end face and outer circumference.

(2) Centering method I

- a .Separate the flange and the center flange.
- b .Fix a dial gauge to the shaft, then measure the run-out of the hub's end face and outer circumference.
- c . Move the boss (coupling side hub), then set to the I dimensions shown in Table1.

Note	Make sure to secure it using the I dimensions in Table 1, otherwise the Shock Guard can not be used because backlash will occur.
------	--

Table 1 Unit: mm Model No. Idimensions TGX10-C 2 TGX20-C 3 TGX35-C 3 TGX50-C 4 TGX70-C 4

Allowable Misalignment

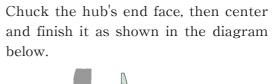
-	Ur	it:	m	nr
	Ur	iit:	m	nr

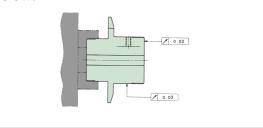
Mode	l No.	Allowable angular misalignment deg.	Allowable parallel misalignment	Allowable axial misalignment
TGX1	0-C	0.6	0.1	± 0.5
TGX2	20-C	0.6	0.1	± 0.5
TGX	35-C	0.6	0.1	± 0.5
TGX5	50-C	0.6	0.1	± 0.6
TGX7	70-C	0.6	0.1	± 0.7

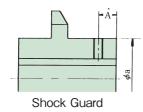
For reference: Hub end face run-out per angular misalignment θ = 0.10° Ur

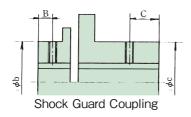
Model No.	Outside diameter	Hub end face run-out
TGX10-C	φ 53	0.092
TGX20-C	ϕ 75	0.131
TGX35-C	φ 98	0.171
TGX50-C	φ 138	0.241
TGX70-C	φ 177	0.309

^{*} Make angular misalignment as small as possible when installing the Shock Guard.

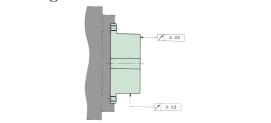



Bore finishing


Refer to the instruction manual for more information on Shock Guard TGX and Shock Guard Coupling TGX-C disassembly for bore finishing, finishing and assembly.


Bore Keyway Set Screw Dimensions

Dimensions Model No.	A x screw diameter	B x screw diameter	C x screw diameter	а	b	С
TGX10	21×M5 and below			30	_	
TGX20	20.5×M5			40		_
TGX35	20.5×M6			55	_	
TGX50	24.5×M6	-		80	_	
TGX70	26 ×M6			100	_	
TGX10-C		8×M 4 and below	21 ×M5 and below		33	30
TGX20-C		12×M 8 and below	20.5×M5	_	55	40
TGX35-C		11×M10 and below	20.5×M6	_	70	55
TGX50-C	_	13×M10 and below	24.5×M6	_	92	80
TGX70-C		15×M10 and below	25.2×M6	_	116	100



Chuck the flange's outer diameter, then center and finish it as shown in the diagram below.

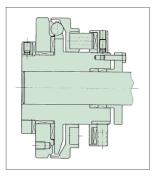
Combination with a Power Lock

1. Applicable range and Transmissible torque

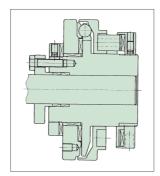
It is possible to combine Shock Guards and Shock Guard Couplings with the Power Locks listed below. TEM will also supply a Shock Guard combined with a Power Lock and special pressure flange and bolts upon request. The chart shows Power Lock transmissible torque for a single set. In the case of multiple sets, multiply by the coefficient below to get the transmissible torque.

Ν	S
2	1.55
3	1.85

N = Line Power Lock sets


S = coefficient

(Example) In case the shaft diameter of 10 mm and 2 sets of Power Locks for TGX20 $\,$

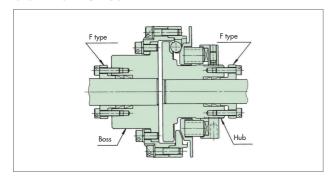

 $1.10 \times 1.55 = 1.705$ about 1.70kgf·m

(1)Shock Guard TGX

Adjustment nut side

Fixed nut side

Power Lock transmissible torque


	Bore diameter	Power Lock	TG			Model 1	VID of A	diustmon				
a didilidi	re diameter		TG			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10. OI A	ujusiiileii	if Guara			
	ometer		10/	X10	TG	X20	TG	X35	TG	X50	TG)	(70
	Ď,	Model No.	Adjustment	Fixed	Adjustment	Fixed	Adjustable	Fixed	Adjustment	Fixed	Adjustment	Fixed
			nut side	nut side	nut side	nut side	nut side	nut side	nut side	nut side	nut side	nut side
1	0	PL010×013E	10.8 {1.10}		10.8 1.10	10.8 1.10						
1	2	PL012×015E	15.7 {1.60}		15.7 1.60	15.7 1.60						
1	3	PL013×016E			18.6 1.90	18.6 1.90						
1	4	PL014×018E			30.4 3.10	30.4 3.10						
1	5	PL015×019E			35.3 3.60	35.3 3.60	35.3 3.60	35.3 3.60				
1	6	PL016×020E			39.2 4.00	39.2 4.00	40.2 4.10	40.2 4.10				
1	7	PL017×021E			43.1 4.40	43.1 4.40	45.1 4.60	45.1 4.60				
1	8	PL018×022E			46.1 4.70	46.1 4.70	51.0 5.20	51.0 5.20				
1	9	$PL019{\times}024E$			41.2 4.20	41.2 4.20	56.8 5.80	56.8 5.80				
2	0	$PL020{\times}025E$			44.1 4.50	44.1 4.50	62.7 6.40	62.7 6.40	62.7 6.40	62.7 6.40		
2	2	PL022×026E					75.5 7.70	75.5 7.70	75.5 7.70	75.5 7.70		
2	4	PL024×028E					90.2 9.20	90.2 9.20	90.2 9.20	90.2 9.20		
2	5	PL025×030E					91.1 9.30		98.0 [10.0]	98.0 [10.0]	98.0 {10.0}	98.0 {10.0}
2	8	PL028×032E					111 {11.3}		123 12.5	123 12.5	123 {12.5}	123 {12.5}
3	0	PL030×035E					115 11.7		141 14.4	141 14.4	141 {14.4}	141 {14.4}
3	2	PL032×036E					124 12.7		160 16.3	160 16.3	160 [16.3]	160 [16.3]
3	5	PL035×040E					127 13.0		217 22.1	217 22.1	217 {22.1}	217 {22.1}
3	6	PL036×042E							229 23.4	229 23.4	229 23.4	229 23.4
3	8	PL038×044E							256 26.1	256 26.1	256 26.1	256 26.1
4	0	$PL040{\times}045E$							312 31.8	312 31.8	312 31.8	312 31.8
4	2	PL042×048E							344 35.1	344 35.1	344 35.1	344 35.1
4	5	$PL045{\times}052E$							366 37.3	366 37.3	490 (50.0)	490 (50.0)
4	8	PL048×055E							398 40.6	398 40.6	530 {54.1}	530 {54.1}
5	0	PL050×057E							419 42.8	419 42.8	557 56.8	557 56.8
5	5	PL055×062E									624	624
5	6	PL056×064E									590 (60.2)	590 (60.2)
6	0	PL060×068E									644 65.7	644 65.7
6	3	PL063×071E									685 [69.9]	685 [69.9]
6	5	PL065×073E									711 72.6	711 72.6
7	0	PL070×079E									724 73.9	724 73.9

Pressure holt tightening torque

Pre	essure bo	it tigi	ntenii	ng to	rque					N·m{	kgf∙m∤
Во					Mod	el No. of	Shock C	Guard			
Bore diameter	Power Lock	TG	X10	TG	X20	TG	X35	TG	X50	TG	X70
ame	Model No.	Adjustment	Fixed	Adjustment	Fixed	Adjustment	Fixed	Adjustment	Fixed	Adjustment	Fixed
		nut side	nut side	nut side	nut side	nut side	nut side	nut side	nut side	nut side	nut side
10	PL010×013E	2.94 (0.30)		1.96	1.96						
12	PL012×015E	3.14 (0.32)		2.06	2.06 (0.21)						
13	PL013×016E			2.16	2.16						
14	PL014×018E			3.53 0.36	3.53 0.36						
15	PL015×019E			3.92 0.40	3.92 (0.40)	2.94 (0.30)	5.00 (0.51)				
16	PL016×020E			4.02 (0.41)	4.02 (0.41)	3.04 0.31	5.10 (0.52)				
17	PL017×021E			4.02 {0.41}	4.02 {0.41}	3.14 (0.32)	5.19 (0.53)				
18	PL018×022E			4.02 0.41	4.02 {0.41}	3.23 (0.33)	5.39 (0.55)				
19	PL019×024E			4.02 0.41	4.02 0.41	3.63 0.37	6.17 [0.63]				
20	PL020×025E			4.02 0.41	4.02 0.41	3.72 0.38	6.37 0.65	5.49 0.56	5.49 0.56		
22	PL022×026E					3.72 0.38	6.27 0.64	5.59 0.57	5.59 0.57		
24	PL024×028E					3.92 {0.40}	6.66	5.59 0.57	5.59 0.57		
25	PL025×030E					4.02 (0.41)		6.27 0.64	6.27 0.64	5.00 (0.51)	5.00 0.51
28	PL028×032E					4.02 (0.41)		6.47 [0.66]	6.47 0.66	5.19 0.53	5.19 0.53
30	PL030×035E					4.02 (0.41)		7.06 0.72	7.06 0.72	5.59 0.57	5.59 0.57
32	PL032×036E					4.02 (0.41)		7.35 0.75	7.35 0.75	5.88 0.60	5.88 0.60
35	PL035×040E					4.02 {0.41}		9.11 [0.93]	9.11 0.93	7.25 0.74	7.25 0.74
36	PL036×042E							9.51 0.97	9.51 0.97	7.64 0.78	7.64 0.78
38	PL038×044E							9.90 {1.01}	9.90 [1.01]	7.94 0.81}	7.94 (0.81)
40	PL040×045E							11.7 {1.19}	11.7 1.19	9.31 0.95	9.31 0.95
42	PL042×048E							12.3 1.26	12.3 1.26	9.80 1.00	9.80 {1.00}
45	PL045×052E							13.7 {1.40}	13.7 1.40	13.7 1.40	13.7 1.40
48	PL048×055E							13.7 {1.40}	13.7 1.40	13.7 1.40	13.7 1.40
50	PL050×057E							13.7 {1.40}	13.7 1.40	13.7 1.40	13.7 1.40
55	PL055×062E									13.7 1.40	13.7 1.40
56	PL056×064E									13.7 1.40	13.7 1.40
60	PL060×068E									13.7 1.40	13.7 1.40
63	PL063×071E									13.7 1.40	13.7 1.40
65	PL065×073E									13.7 {1.40}	13.7 1.40
70	PL070×079E									13.7 1.40	13.7 1.40

Shock Guard

(2) Coupling Type TGX-C

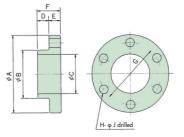
Power Lock transmissible torque

N·m {kgf·m}

φ.					Mod	el No. of	Shock C	Guard			
Bore diameter	Power Lock	TGX	10-C	TGX	20-C	TGX	35-C	TGX.	50-C	TGX	70-C
iame	Model No.	Shock	Coupling	Shock	Coupling	Shock	Coupling	Shock	Coupling	Shock	Coupling
er		Guard side	side	Guard side	side	Guard side	side	Guard side	side	Guard side	side
10	PL010×013E	10.8 {1.10}	10.8 {1.10}	10.8 {1.10}	10.8 {1.10}						
12	PL012×015E	15.7 1.60	15.7 1.60	15.7 1.60	15.7 1.60						
13	PL013×016E			18.6 1.90	18.6 [1.90]						
14	PL014×018E			30.4 3.10	30.4 3.10						
15	PL015×019E			35.3 3.60	35.3 3.60	35.3 3.60	35.3 3.60				
16	PL016×020E			39.2 4.00	39.2 4.00	40.2 4.10	40.2 4.10				
17	PL017×021E			43.1 4.40	43.1 (4.40)	45.1 4.60	45.1 4.60				
18	PL018×022E			46.1 4.70	46.1 [4.70]	51.0 5.20	51.0 5.20				
19	PL019×024E			41.2 4.20	41.2 4.20	56.8 5.80	56.8 5.80				
20	PL020×025E			44.1 4.50	44.1 4.50	62.7 6.40	62.7 6.40	62.7 6.40	62.7 6.40		
22	PL022×026E					75.5 7.70	75.5 7.70	75.5 7.70	75.5 7.70		
24	PL024×028E					90.2 9.20	90.2 9.20	90.2 9.20	90.2 9.20		
25	PL025×030E					91.1 9.30	91.1 9.30	98.0 {10.0}	98.0 {10.0}	98.0 {10.0}	98.0 {10.0}
28	PL028×032E					111 {11.3}	111 {11.3}	123 12.5	123 12.5	123 12.5	123 {12.5}
30	PL030×035E					115 {11.7}	115 {11.7}	141 {14.4}	141 {14.4}	141 14.4	141 {14.4}
32	PL032×036E					124 12.7	124 12.7	160 [16.3]	160 [16.3]	160 16.3	160 {16.3}
35	PL035×040E					127 {13.0}	127 {13.0}	21 <i>7</i> 22.1	21 <i>7</i> 22.1	21 <i>7</i> 22.1	217 22.1}
36	PL036×042E							229 23.4	229 23.4	229 23.4	229 23.4
38	PL038×044E							256 26.1	256 26.1	256 26.1	256 26.1
40	PL040×045E							312 31.8	312 31.8	312 31.8	312 31.8
42	PL042×048E							344 35.1	344 35.1	344 35.1	344 35.1}
45	PL045×052E							366 37.3	366 37.3	490 50.0	490 50.0}
48	PL048×055E							398 40.6	398 40.6	530 54.1	530 54.1}
50	PL050×057E							419 42.8	419 42.8	557 56.8	557 56.8
55	PL055×062E									624 63.7	624 63.7
56	PL056×064E									590 60.2	590 60.2
60	PL060×068E									644 65.7	644 65.7
63	PL063×071E									685 69.9	685 69.9}
65	PL065×073E									711 72.6	711 72.6
70	PL070×079E									724 73.9	724 73.9

Pressure bolt tightening torque

 $N \!\cdot\! m \mid \! kgf \!\cdot\! m \! \mid$


œ					Mode	el No. of	Shock C	Suard			
Bore diameter	Power Lock	TGX	10-C	TGX	20-C	TGX:	35-C	TGX.	50-C	TGX	70-C
iame	Model No.	Shock	Coupling	Shock	Coupling	Shock	Coupling	Shock	Coupling	Shock	Coupling
er		Guard side	side	Guard side	side	Guard side	side	Guard side	side	Guard side	side
10	PL010×013E	2.94 (0.30)	2.94 (0.30)	1.96 0.20	1.96 (0.20)						
12	PL012×015E	3.14 0.32	3.14 0.32	2.06 (0.21)	2.06 (0.21)						
13	PL013×016E			2.16 0.22	2.16 0.22						
14	PL014×018E			3.53 0.36	3.53 0.36						
15	PL015×019E			3.92 0.40	3.92 0.40	2.94 0.30	2.94 0.30				
16	PL016×020E			4.02 0.41	4.02 0.41}	3.04 (0.31)	3.04 0.31				
17	PL017×021E			4.02 0.41	4.02 (0.41)	3.14 (0.32)	3.14 0.32				
18	PL018×022E			4.02 0.41	4.02 (0.41)	3.23 (0.33)	3.23 0.33				
19	PL019×024E			4.02 0.41	4.02 (0.41)	3.63 0.37	3.63 0.37				
20	PL020×025E			4.02 0.41	4.02 {0.41}	3.72 {0.38}	3.72 0.38	5.49 0.56	5.49 0.56		
22	PL022×026E					3.72 (0.38)	3.72 0.38	5.59 0.57	5.59 0.57		
24	PL024×028E					3.92 (0.40)	3.92 0.40	5.59 0.57	5.59 0.57		
25	PL025×030E					4.02 0.41	4.02 0.41	6.27 0.64	6.27 0.64	5.00 (0.51)	5.00 (0.51)
28	PL028×032E					4.02 0.41	4.02 0.41	6.47 0.66	6.47 0.66	5.19 (0.53)	5.19 0.53
30	PL030×035E					4.02 (0.41)	4.02 0.41	7.06 0.72	7.06 0.72	5.59 0.57	5.59 0.57
32	PL032×036E					4.02 (0.41)	4.02 0.41	7.35 0.75	7.35 0.75	5.88 (0.60)	5.88 (0.60)
35	PL035×040E					4.02 (0.41)	4.02 0.41	9.11 0.93	9.11 0.93	7.25 0.74	7.25 0.74
36	PL036×042E							9.51 0.97	9.51 0.97	7.64 0.78	7.64 0.78
38	PL038×044E							9.90 {1.01}	9.90 1.01	7.94 0.81	7.94 0.81
40	PL040×045E							11.7 {1.19}	11.7 {1.19}	9.31 0.95	9.31 0.95
42	PL042×048E							12.3 1.26	12.3 1.26	9.80 1.00	9.80 1.00
45	PL045×052E							13.7 1.40	13.7 1.40	13.7 1.40	13.7 1.40
48	PL048×055E							13.7 1.40	13.7 1.40	13.7 1.40	13.7 1.40
50	PL050×057E							13.7 1.40	13.7 {1.40}	13.7 {1.40}	13.7 1.40
55	PL055×062E									13.7 {1.40}	13.7 1.40
56	PL056×064E									13.7 {1.40}	13.7 1.40
60	PL060×068E									13.7 1.40	13.7 1.40
63	PL063×071E									13.7 {1.40}	13.7 1.40
65	PL065×073E									13.7 {1.40}	13.7 1.40
70	PL070×079E									13.7 1.40	13.7 1.40

2. Rough bore pressure flange

Special pressure flange and pressure bolts are MTO upon request

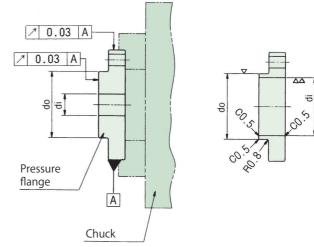
Special pressure bolts are JIS Strength Class 10.9. Pressure flange is installed with tap holes at the hub or boss (coupling side hub) end faces.

Refer to page 50 for the recommended finished dimensions.

Rough Bore Pressure Flange Dimensions

•				_											Unit: mm
Pressure flange Model No.	Α	Rough measur B	bore ements C	D	Е	F	G PCD	Н	J	¹¹Mass kg	Moment of inertia kg·m²	'2GD2 kgf·m²	Pressure bo × the num		Tap side screw effective depth
TGX10-F	30	14.9	10.1	5	6	11	22	4	4.5	0.037	0.043	0.173	M4×14R	4	M4× 8R
TGX20-F	40	24.8	10.1	6	6	12	32	6	4.5	0.080	0.150	0.600	M4×14R	6	M4× 8R
TGX35-F	55	39.8	15.1	6	6	12	47	8	4.5	0.16	0.598	2.39	M4×14R	8	M4× 8R
TGX50-F	81	56.8	20.2	7	10	17	69	8	6.6	0.53	4.240	16.96	M6×22R	8	M6×12R
T01/70 F			0.5.0	_											

 $^{^*}$ 1, * 2 Weight and GD² are together as 1 set of pressure flange (max. bore) and pressure bolt. Note: All products are MTO.


3. Pressure flange recommended finishing dimensions

(1) Centering

Chuck and center based on the flange external diameter. (Refer to the diagram on the right)

(2) Recommended dimensions

Depending on Power Lock size, choose the finishing dimensions from the chart below.

Pressure flange centering and processing diagram

									OCESSII Ig UIA		Unit: mm
Bore diameter	Power Lock	TGX1	0 (C)		20 (C) F		35(C) F		50 (C) F	TGX7	70 (C) F
(mm)	Model No.	do _0.1	di +0.1	do_0.1	di +0.1	do_0.1	di +0.1	do_0.1	di +0.1	do_0.1	di +0.1
10	PL010×013E	12.9	10.1	12.9	10.1		1 1 1		1 1 1		
12	PL012×015E	14.9	12.1	14.9	12.1						
13	PL013×016E			15.9	13.1						
14	PL014×018E			17.9	14.1						1
15	PL015×019E		 	18.9	15.1	18.9	15.1	18.9	15.1		
16	PL016×020E		 	19.9	16.1	19.9	16.1	19.9	16.1		1
17	PL017×021E		 	20.9	1 <i>7</i> .1	20.9	1 <i>7</i> .1	20.9	1 <i>7</i> .1		1
18	PL018×022E		 	21.9	18.1	21.9	18.1	21.9	18.1		
19	PL019×024E		 	23.8	19.2	23.8	19.2	23.8	19.2		
20	PL020×025E		 	24.8	20.2	24.8	20.2	24.8	20.2		
22	PL022×026E		 			25.8	22.2	25.8	22.2		1
24	PL024×028E		1			27.8	24.2	27.8	24.2		1
25	PL025×030E		 		1	29.8	25.2	29.8	25.2	29.8	25.2
28	PL028×032E				1	31.8	28.2	31.8	28.2	31.8	28.2
30	PL030×035E		 		1	34.8	30.2	34.8	30.2	34.8	30.2
32	PL032×036E		 		1	35.8	32.2	35.8	32.2	35.8	32.2
35	PL035×040E		 		1	39.8	35.2	39.8	35.2	39.8	35.2
36	PL036×042E		 		 		1 1 1	41.8	36.2	41.8	36.2
38	PL038×044E		 		 		1 1 1	43.8	38.2	43.8	38.2
40	PL040×045E		 		1		1	44.8	40.2	44.8	40.2
42	PL042×048E		1		1			47.8	42.2	47.8	42.2
45	PL045×052E		1		1		1	51.8	45.2	51.8	45.2
48	PL048×055E		1		 		1	54.8	48.2	54.8	48.2
50	PL050×057E		1		1		1	56.8	50.2	56.8	50.2
55	PL055×062E		 		1		1		1	61.8	55.2
56	PL056×064E		 		1		1		1	63.8	56.2
60	PL060×068E		1 1 1 1		 		1 1 1		1 1 1	67.8	60.2
63	PL063×071E		 		 		I I I		 	70.8	63.2
65	PL065×073E		 		 		I I I		I I I	72.8	65.2
70	PL070×079E		I I		1		1			78.7	70.3

^{*} Refer to the instruction manual for information on hub bore finishing when installing the Power Lock.

Features

Ideal for direct mounting of an index table thanks to the excellent mounting surface accuracy of the output flange.

High accuracy

Ideal for indexers thanks to its minimal backlash and excellent reset position accuracy.

One position type

The balls and pockets, which transfer the torque, are engaged only in one position because of the unique structure.

Easy torque adjustment

You only have to turn the adjustment nut (or bolt) to adjust the trip torque thanks to the torque scale.

Automatic reset

Thanks to automatic re-engagement, you only have to rotate the drive side after removing the cause of overload.

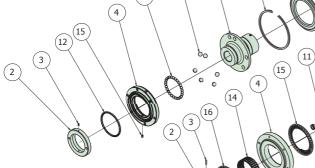
	TGF
Type 2	Enables direct mounting of timing pulleys. The shaft-securing setscrew can be tightened from the outside.
Type 3	Thinner than Type 2 and ideal for Power-Lock mounting.
Type 5	The Echt-Flex Coupling provides an angular tolerance. Parallelism errors are not allowed.
Type 7	The Echt-Flex Coupling provides angular and parallelism tolerances.

Construction and Operating Principles

(1) Steel ball B

12 Steel ball C

(4) Thrust bearing


(13) Hexagon socket head set screw

〔5〕

(13) Housing

TGF20 to 45

- 1) Hub
- 2 End nut
- 3 Hexagon socket head set screw
- 4 Drive plate
- ⑤ Slide plate
- 6 Adjustment nut
- ⑦ Coil spring
- Brive ball (Steel ball A)
 Cross ring
- 9 Snap ring
- ① Hexagon socket head set screw

① Hub

(10

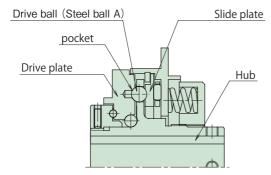
② End nut

6

3 Hexagon socket head set screw

(17)

- 4 Drive plate
- Slide plate
- 6 Adjustment nut


- ③ Spring holder
- (8) Hex cap countersunk screw
- 9 Coil spring
- 10 Drive ball (Steel ball A)
- 11 Bush
- 12 Snap ring
- (13) Hexagon socket head set screw
- 14 Radial bearing
- 15 Thrust bearing A
- (6) Thrust bearing A
- 17 Housing
- ® Thrust bearing B

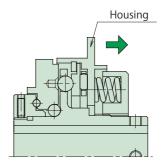
TGF65 to 90

TGF20 to 45

The principle of operation is the same for TGF65 and TGF90.

During normal operation (engagement)

The TGF series transfers driving force from the hub to the drive plate on the output side via drive balls (and vice versa).

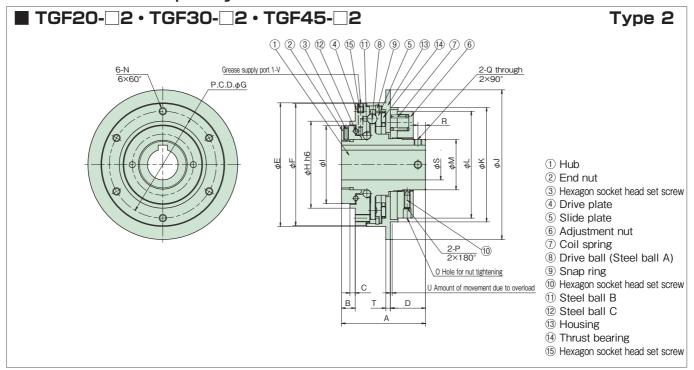

Bolt a sprocket or timing pulley directly to the drive plate.

The hub flange has several holes to hold the drive balls.

There are pockets on the drive plate on the output side, and the drive balls are pushed by coil springs via the slide plate to be fitted into the pockets to transfer the driving force.

If an overload occurs, the drive balls push the slide plate toward the coil springs and come out of the pockets of the drive plate while rotating to release the driving force.

During overload (trip)



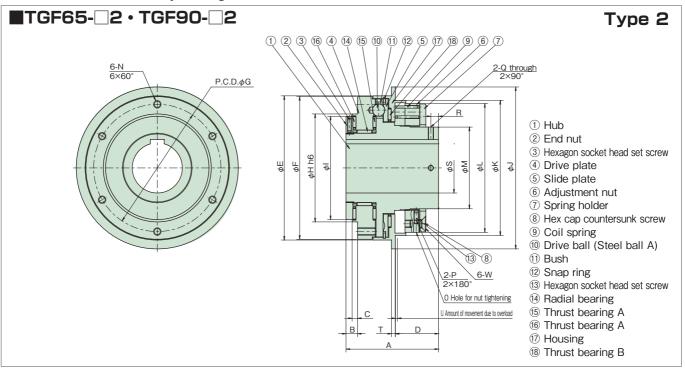
Then, the housing moves toward the coil springs. Therefore, it is easy to stop the drive source automatically after the occurrence of an overload by detecting the amount of movement of the housing using aTG sensor or a similar device.

Resetting procedure

If you restart the operation after the occurrence of an overload, the drive balls automatically return to their positions within one revolution.

If you continue to rotate the TGF series after the occurrence of an overload, the TGF series is repeatedly reset. Therefore, detect overloads using a TG sensor or a similar device and shutdown the drive source immediately.

Model No.	ra	torque inge I·m	Max r/n	rpm nin ^{*1}	Coil spring number	Rough bore diamter	Min. bore diameter	JIS keyway for max. bore dia.	. A	В	С	D	Е	F	G P.C.D.	H h6	1	J
TGF20-L2	5	to 20			2													
TGF20-M2	10	to 40	90	00	4	8	10	20	55	9	3.	5 23	81	80	70	57	51	98
TGF20-H2	20	to 80			8													
TGF30-L2	5	to 73.5			2													
TGF30-M2	10	to 147	7.	40	4	10	12	30	80	11	5.	5 39	103	100	90	75	69	130
TGF30-H2	20	to 294			8													
TGF45-L2	30	to 156			3													
TGF45-M2	60	to 313	60	00	6	20	22	45	95	14	7.	0 46	142	140	125	100	92	165
TGF45-H2	120	to 568			12													
Model No.	K	L	М	N scre diamt × lenç	er p	O No. of cs hole 1. × dep	diam	nter diameter*2	R*2	T	U	V screw diamter ×length	W screwdiamte	r /vias	ss ^{*3} Mon	nent of inertion		owable ial load N
TGF20-L2																		
TGF20-M2	75	70	33	$M5 \times$	9 4-	ϕ 5 × 6	6 M4×	12 M5	5	3	1.2	M4×8	_	1.4	4 0	.00108	3 1	300
TGF20-H2																		
TGF30-L2																		
TGF30-M2	98	92	48	M6×	11 4-	ϕ 7×7	7 M6×	15 M6	5	4	1.8	M4×8	_	3.3	3 0	.00435	3	100
TGF30-H2																		
TGF45-L2																		
TGF45-M2	132	124	66	$M8 \times$	13 6-	ϕ 7×7	7 M6×	20 M8	8	4	2.2	M4×8	_	6.	7 0	.0165	3	900
TGF45-H2																		

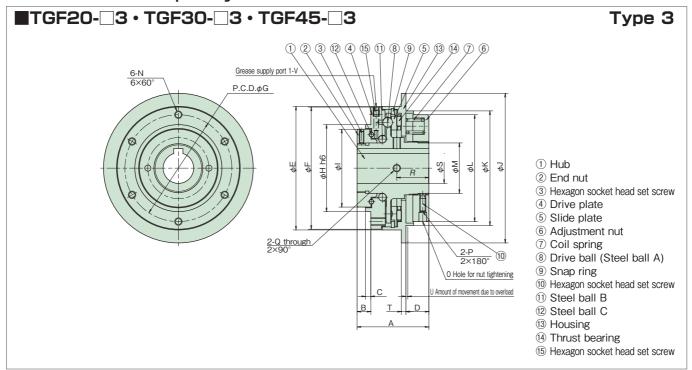

^{*1.} Contact us for details on use at speeds higher than the maximum speed.

^{2.} Setscrew taps are not processed. Dimensions are for reference only.

^{3.} Mass and moment of inertia are based on the bores' maximum diameters.

Note) When installing a pulley or sprocket, use high-tensile bolts (G10.9 or higher) and determine the length carefully so that the bolts are not buried deeper than the mounting tap depth N.

Model No.	ra	torque inge I·m		x. rpm min ^{*1}	Coil spring number	Rough bore diamter	S Min. bore diameter	JIS keyway for m	ax. A	В	C	D	Е	F	G P.C.D.	H h6	I	J
TGF65-L2	40 t	o 264			3													
TGF65-M2	80 t	o 539	4	130	6	30	32	65	120	1.5	5 7	56	187	185	165	140	134	210
TGF65-H2	160 t	o 1078			12													
TGF90-L2	196 t	o 1225			3													
TGF90-M2	392 t	o 2450	3	30	6	45	47	90	170	23	3 9	93	252	246	215	175	170	280
TGF90-H2	784 t	o 4900			12													
Model No.	K	L	М	N scrediami	er p	O No. of ocs hole a. × dep	diam	nter diameter	R*2	Т	U	V screw diamter × length	W screw diamte × length	1 1.0		nent of iner	tia Alla radi	wable al load N
TGF65-L2																		
TGF65-M2	175	167	106	M10×	17	5-φ7×1	2 M6>	<20 M10	10	5	2.7	_	M10×2	20 16	5 O	.0678	30	000
TGF65-H2																		
TGF90-L2																		
TGF90-M2	243	233	150	M16×	20 6	φ12×1	5 M10>	<30 M12	10	8	5.0	_	M12×3	37	7 0	.267	33	000
TGF90-H2																		


^{*1.} Contact us for details on use at speeds higher than the maximum speed.

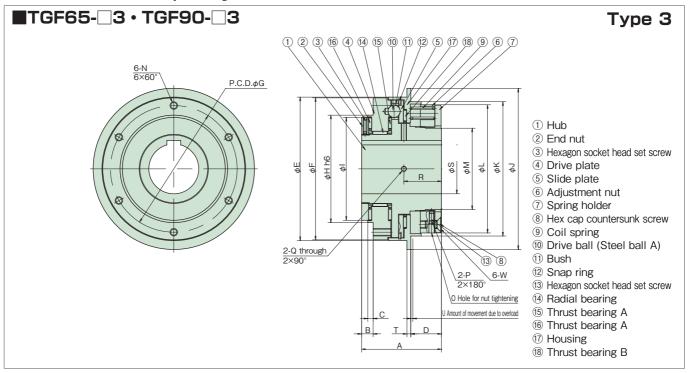
^{2.} Setscrew taps are not processed. Dimensions are for reference only.

^{3.} TGF65 uses hex cap countersunk screws, and TGF90 uses hex bolts.

^{4.} Mass and moment of inertia are based on the bores' maximum diameters.

Note) When installing pulley or sprocket, use high-tensile bolts (G10.9 or higher) and determine the length carefully so that the bolts are not buried deeper than the mounting tap depth N.

Model No.	ra	torque inge I·m	Max r/n	rpm nin ^{*1}	Coil spring number	Rough bore diamter	Min. bore diameter	JIS keyway for max bore dia.	. A	В	С	D	Е	F	G P.C.D.	H h6	I	J
TGF20-L3	5	to 20			2													
TGF20-M3	10	to 40	9	00	4	8	10	20	47	9	3.	5 15	81	80	70	57	51	98
TGF20-H3	20	to 80			8													
TGF30-L3	5 1	to 73.5			2													
TGF30-M3	10 t	to 147	7.	40	4	10	12	30	71	11	5.	5 30	103	100	90	75	69	130
TGF30-H3	20 t	to 294			8													
TGF45-L3	30 t	to 156			3													
TGF45-M3	60 t	to 313	6	00	6	20	22	45	81	14	7.	0 32	142	140	125	100	92	165
TGF45-H3	120	to 568			12													
Model No.	K	L	М	N scre diamt ×leng	er p	O No. of cs hole ı. × dep	diam	nter diameter *2	R*2	T	U	V screw diamter × length	W screv diamte ×lengt	r //vias		ment of iner kg·m²	tia	owable al load N
TGF20-L3																		
TGF20-M3	75	70	33	$M5 \times$	9 4-	ϕ 5 × 6	6 M4×	12 M5	21	3	1.2	M4×8	_	1.3	3 0	0.00108	3 1	300
TGF20-H3																		
TGF30-L3																		
TGF30-M3	98	92	48	M6×	11 4-	ϕ 7 × 7	7 M6×	15 M6	3 <i>7</i>	4	1.8	M4×8	_	3.2	2 0	.00429	3	100
TGF30-H3																		
TGF45-L3																		
TGF45-M3	132	124	66	$M8 \times$	13 6-	ϕ 7 × 7	7 M6×	20 M8	40	4	2.2	M4×8	_	6.3	5 0	0.0163	3	900
TGF45-H3																		


^{*1.} Contact us for details on use at speeds higher than the maximum speed.

^{2.} Setscrew taps are not processed. Dimensions are for reference only.

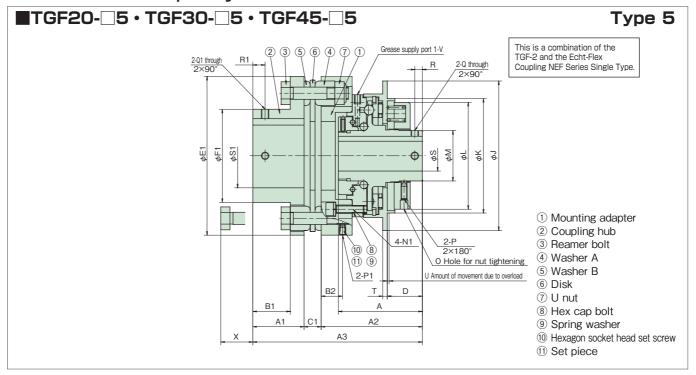
^{3.} Mass and moment of inertia are based on the bores' maximum diameters.

Note) When installing a pulley or sprocket, use high-tensile bolts (G10.9 or higher) and determine the length carefully so that the bolts are not buried deeper than the mounting tap depth N.

Model No.	ra	torque nge · m		c. rpm min ^{*1}	Coil spring number	Rough bore diamter	S Min. bore diameter	JIS keyway for m	ax. A	В	C	C D	Е	F	G P.C.D.	H h6	I	J
TGF65-L3	40 t	o 264			3													
TGF65-M3	80 t	o 539	4	.30	6	30	32	65	104	1.5	5 7	40	187	185	165	140	134	210
TGF65-H3	160 t	o 1078			12													
TGF90-L3	196 t	o 1225			3													
TGF90-M3	392 t	o 2450	3	30	6	45	47	90	150	23	3 9	73	252	246	215	175	170	280
TGF90-H3	784 t	o 4900			12													
Model No.	K	L	М	N scre diamt × leng	er p	No. of cs hole . × dep	diam	nter diameter		Т	U	V screw diamter × length	diamter	1.0		nent of iner kg·m²	tia Alla radi	wable al load N
TGF65-L3																		
TGF65-M3	175	167	106	M10×	17 6	-φ7×1	2 M6>	<20 M10	49	5	2.7	_	M10×2	0 15.	2 0	.0662	30	0000
TGF65-H3																		
TGF90-L3																		
TGF90-M3	243	233	150	M16×	20 6-	ϕ 12×1	5 M10>	<30 M12	75	8	5.0	_	M12×3	5 34.	7 0	.258	33	3000
TGF90-H3																		

^{*1.} Contact us for details on use at speeds higher than the maximum speed.

^{2.} Setscrew taps are not processed. Dimensions are for reference only.


^{3.} TGF65 uses hex cap countersunk screws, and TGF90 uses hex bolts. (Hex bolts will protrude a maximum of 7.5 mm from the edge of the hub.)

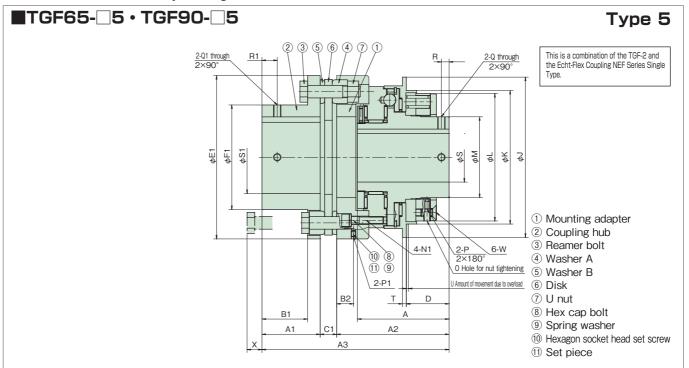
^{4.} Mass and moment of inertia are based on the bores' maximum diameters.

Note) When installing a pulley or sprocket, use high-tensile bolts (G10.9 or higher) and determine the length carefully so that the bolts are not buried deeper than the mounting tap depth N.

Shock Guard

Transmissible Capacity/Dimensions

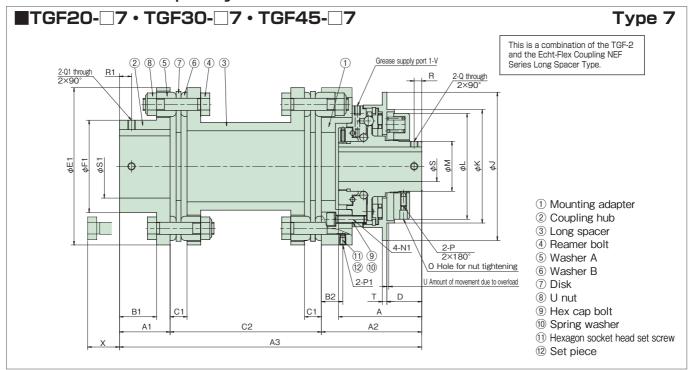
Unit: mm


	Set t	orque	Man	c. rpm	Coil		hock G	uard S		Couplin	ng S1							
Model No.	ra	nge · m	r/n	nin ^{'*} 1	spring number	Rough bore diamter	Min. bore diameter	JIS keyway for max. bore dia.	Rough bore diamter	Min. bore diameter	JIS keyway for max bore dia.	. A	A1	A2	A3	B1	B2	C1
TGF20-L5	5 t	to 20			2													
TGF20-M5	10 1	to 40	9	00	4	8	10	20	15	1 <i>7</i>	42	55	33.5	66.3	111	24.5	14	11.2
TGF20-H5	20 1	to 80			8													
TGF30-L5	5 t	o 73.5	5		2													
TGF30-M5	10 t	to 147	7.	40	4	10	12	30	15	1 <i>7</i>	60	80	47.8	102.5	162	33.8	22	11.7
TGF30-H5	20 1	o 294			8													
TGF45-L5	30 t	to 156			3													
TGF45-M5	60 1	to 313	6	00	6	20	22	45	25	27	74	95	57.2	110	184	43.2	1 <i>7</i>	16.8
TGF45-H5	120 1	to 568			12													
Model No.	D	E1	F1	J	K	L		N1 screw diamter × 1 length	No. of po	cs hole	diamter c	1 screw liamter (length	Q*2	Q1*2	R*2	R1*2	T	U
TGF20-L5																		
TGF20-M5	23	104	61	98	75	70	33	M5×20	$4-\phi$	5×6	M4×12 /	Λ4×6	M5	M5	5	8	3	1.2
TGF20-H5																		
TGF30-L5																		
TGF30-M5	39	143	84	130	98	92	48	M6×25	$4-\phi$	7×7	M6×15 /	Л 5×6	M6	M6	5	12	4	1.8
TGF30-H5																		
TGF45-L5																		
TGF45-M5	46	168	106	165	132	124	66	M8×25	$6-\phi$	7×7	M6×20 /	м 5×6	M8	M8	8	15	4	2.2
TGF45-H5																		

Model No.	V screw diamter × length	W screw diamter × length	Mass*3 kg	Moment of inertia ^{*3} kg · m ²	Coupling model No.	X*4	Allowable A Angular misalignment deg	Aisalignment Shaft direction displacement 5
TGF20-L5 TGF20-M5 TGF20-H5	M4×8	_	3.2	0.00365	NEF25S	21	1	±1.4
TGF30-L5 TGF30-M5 TGF30-H5	M4×8	_	8.6	0.0188	NEF80S	29.5	1	± 1.8
TGF45-L5 TGF45-M5 TGF45-H5	M4×8	_	14.0	0.0437	NEF130S	20	1	± 2.5

- *1. Contact us for details on use at speeds higher than the maximum speed.
- 2. Setscrew taps are not processed. Dimensions are for reference only.
- 3. Mass and moment of inertia are based on the bores' maximum diameters.
- 4. This is the space required for the insertion of a reamer bolt.
- The allowable displacement in the shaft direction is the value when the angular error is zero.

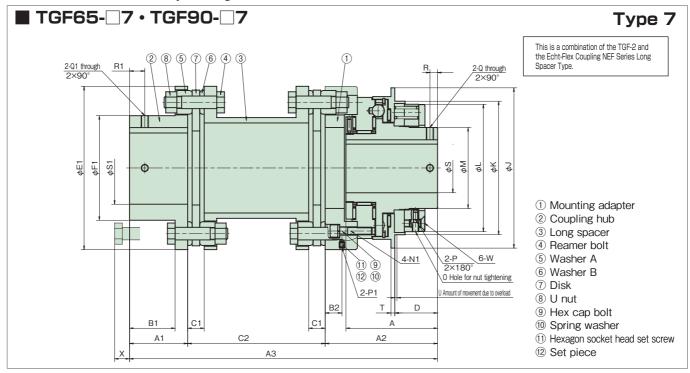
Parallelism errors are not allowed.



	Set t	orque	A 4		Coil	S	hock G	uard S		Couplin	ng S1							
Model No.	ra	nge · m		c. rpm min ^{*1}	spring number	Rough bore diamter	Min. bore diameter	JIS keyway for max bore dia.	Rough bore diamter	Min. bore diameter	JIS keyway for max. bore dia.	Α	A1	A2	A3	B1	B2	C1
TGF65-L5	40 to	264			3													
TGF65-M5	80 to	539	4	30	6	30	32	65	45	47	95	120	76.2	147.2	245	59.7	22	21.6
TGF65-H5	160 to	o 1078	1		12													
TGF90-L5	196 to	1225			3													
TGF90-M5	392 to	2450	3	30	6	45	47	90	50	52	118	170	101.6	211.2	340	76.1	35	27.2
TGF90-H5	784 to	4900)		12													
Model No.	D	E1	F1	J	K	L		N1 screw diamter × length	No. of po dia. ×	cs hole	diamter d	screwiamter length	Q*2	Q1*2	R*2	R1*2	T	U
TGF65-L5																		
TGF65-M5	56	214	13 <i>7</i>	210	175	167	106	M10×45	$6 - \phi 7$	×12	M6×20 \	8×6	M10	M10	10	20	5	2.7
TGF65-H5																		
TGF90-L5																		
TGF90-M5	93	276	169	280	243	233	150	M16×60	$6 - \phi 12$	2×15	M10×30 M	6×10	M12	M12	10	30	8	5.0
TGF90-H5																		

Model No.	V screw diamter × length	× diamter × Mass Moment of inertia Coupling			X*5	Allowable A Angular misalignment deg	Aisalignment Shaft direction displacement ⁶		
TGF65-L5 TGF65-M5 TGF65-H5	_	M10×20	32.0	0.166	NEF340S	19.5	1	± 3.3	
TGF90-L5 TGF90-M5 TGF90-H5	_	M12×35	75.6	0.660	NEF700S	40	1	± 4.0	

- *1. Contact us for details on use at speeds higher than the maximum speed.
- 2. Setscrew taps are not processed. Dimensions are for reference only.
- 3. TGF65 uses hex cap countersunk screws, and TGF90 uses hex bolts.
- 4. Mass and moment of inertia are based on the bores' maximum diameters.
- 5. This is the space required for the insertion of a reamer bolt.
- The allowable displacement in the shaft direction is the value when the angular error is zero. Parallelism errors are not allowed.



	Set torque Max. rpm Coil Shock Guc																		
	Set t	oraue	٨٨٠٠٠		Coil	S	hock G	uard S		Couplir	ng S1								
Model No.	ra	nge · m		nin ^{*1}	spring number	Rough bore diamter	Min. bore diameter	JIS keyway for max. bore dia.	Rough bore diamter	Min. bore diameter	JIS keyway for max. bore dia.	А	A1	A2	A3	B1	B2	C1	C2
TGF20-L7	5	to 20			2														
TGF20-M7	10	to 40	9	00	4	8	10	20	15	1 <i>7</i>	42	55	33.5	66.3	199.8	24.5	14	11.2	100
TGF20-H7	20	to 80			8														
TGF30-L7	5 t	o 73.5	5		2														
TGF30-M7	10	to 147	7	40	4	10	12	30	15	1 <i>7</i>	60	80	47.8	102.5	277.3	33.8	22	11.7	127
TGF30-H7	20	to 294			8														
TGF45-L7	30	to 156			3														
TGF45-M7		to 313	_	00	6	20	22	45	25	27	74	95	57.2	110	307.2	43.2	17	16.8	140
TGF45-H7	120	to 568			12														
Model No.	D	E1	F1	J	K	L		N1 screw diamter × length	O No. - hole de	dia. ×	diamter d	screv iamter length	Q*2	Q1	*2	2*2	R1*2	Т	U
TGF20-L7																			
TGF20-M7	23	104	61	98	75	70	33	M5×20	$4-\phi 5$	×6	$M4 \times 12 \mid h$	14×6	M5	M	5	5	8	3	1.2
TGF20-H7																			
TGF30-L7							4.0			_						_			
TGF30-M7	39	143	84	130	98	92	48	M6×25	$4-\phi 7$	×/	M6×15 N	15×6	M6	M	6	5	12	4	1.8
TGF30-H7																			
TGF45-L7		1.40	10/	1 / 5	100	10.4		14005	, , ¬	7		45					1.5		0.0
TGF45-M7	46	168	106	165	132	124	66	M8×25	6 -φ7	×/	M6×20 N	15×6	M8	M	8	8	15	4	2.2
TGF45-H7												_							
		247							AII		٠٨:	L							

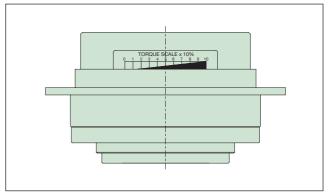
Model No.	V screw diamter × length	W screw diamter × length*3	Mass ^{*4} kg	Moment of inertia*4 kg·m²	Coupling model No.	X*4	Allowak Angular misalignment deg	ole Misal Shaft direction displacement ⁵	ignment Parallel misalignment'5
TGF20-L7 TGF20-M7 TGF20-H7	M4×8	_	- 4.8 0.00586 NEF25W		21	2	± 2.8	1.5	
TGF30-L7 TGF30-M7 TGF30-H7	M4×8	_	12.4	0.0299	NEF80W	29.5	2	±3.6	2.0
TGF45-L7 TGF45-M7 TGF45-H7	M4×8	_	19.1	0.0651	NEF130W	20	2	± 5.0	2.1

- *1. Contact us for details on use at speeds higher than the maximum speed.
- 2. Setscrew taps are not processed. Dimensions are for reference only.
- 3. Mass and moment of inertia are based on the bores' maximum diameters.
- 4. This is the space required for the insertion of a reamer bolt.
- The allowable displacement in the shaft direction is the value when the angular error is zero.

	Set t	orque	A 4		Coil	S	hock G	uard S		Coupli	ng S1								
Model No.	ra	nge · m		c. rpm min ^{*1}	spring number	Rough bore diamter	Min. bore diameter	JIS keyway for max bore dia.	Rough bore diamter	Min. bore diameter	JIS keyway for max. bore dia.	A	A1	A2	A3	B1	B2	C1	C2
TGF65-L7	40 to	264			3														
TGF65-M7	80 to	539	4	30	6	30	32	65	45	47	95	120	76.2	147.2	403.4	59.7	22	21.6	180
TGF65-H7	160 to	1078		Ī	12														
TGF90-L7	196 to	1225			3														
TGF90-M7	392 to	2450	3	30	6	45	47	90	50	52	118	170	101.6	211.2	562.8	76.1	35	27.2	250
TGF90-H7	784 to	4900			12														
Model No.	D	E1	F1	J	K	L		N1 screw diamter × length	No. of po	cs hole	diamter d	l screw iamter ength	Q*2	Q1	*2 R	l*2	R1*2	Т	U
TGF65-L7																			
TGF65-M7	56	214	137	210	175	167	106	M10×45	6- <i>φ</i> 7	×12	M6×20 N	8×6	M10	M1	0 1	0	20	5	2.7
TGF65-H7																			
TGF90-L7																			
TGF90-M7	93	276	169	280	243	233	150	M16×60	6-φ 12×15 Λ		M10×30 M	6×10	M12	2 M1	2 1	0	30	8	5.0
TGF90-H7																			

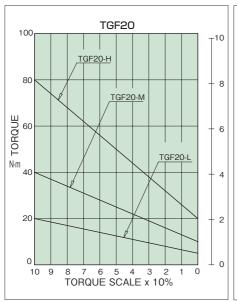
Model No.	V screw	W screw	Mass*4	Moment of inertia*4	Coupling	X*5		ole Misal	
Model INo.	diamter ×length	diamter × length*3	kg	kg·m²	model No.		Angular misalignment deg	Shaft direction displacement ⁷⁶	Parallel misalignment ^{*6}
TGF65-L7									
TGF65-M7	_	M10×20	42.6	0.236	NEF340W	19.5	2	±6.6	2.7
TGF65-H7									
TGF90-L7									
TGF90-M7	_	M12×35	102	0.954	NEF700W	40	2	±8.0	3.8
TGF90-H7									

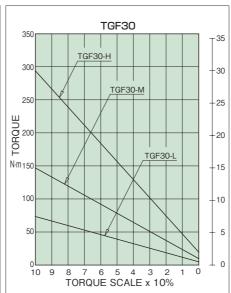
- *1. Contact us for details on use at speeds higher than the maximum speed.
- Setscrew taps are not processed. Dimensions are for reference only.
 TGF65 uses hex cap countersunk screws, and TGF90 uses hex bolts.
- Mass and moment of inertia are based on the bores' maximum diameters.
- 5. This is the space required for the insertion of a reamer bolt.
- 6. The allowable displacement in the shaft direction is the value when the angular error is zero.

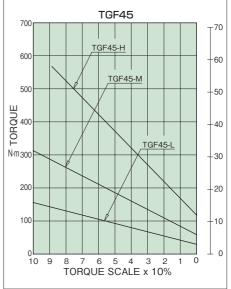

Torque adjustment

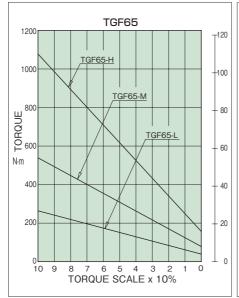
1. Read the torque scale value that corresponds to the required torque from the torque correlation charts and tighten the adjustment nut (6) to that value. To tighten the adjustment nut (6), hook a hook spanner or insert a round bar in the hole in the periphery of the nut, and then turn the nut.

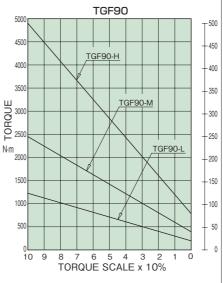
Note) If you are using the TGF30 or TGF45 size and a high torque (200 N·m or higher) is required, use the dedicated hook spanner (sold separately).


If you are using the TGF65 or TGF90 size and a high torque is required, loosen the bolt (8) to adjust the torque, turn the adjustment nut (6) to the required torque scale value, lock the adjustment nut (6) with the hex cap setscrew (13), and then retighten the bolt.

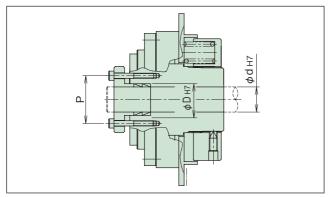

2. When the torque is determined, write down the torque on the name plate so that you can easily set the torque to the previous value even after an overhaul. If you mark matchmarks on both the nut and the edge of the hub, you can reset the torque more precisely.




Torque scale

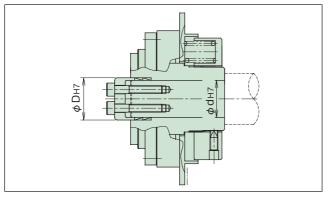

Torque Correlation Chart

Power Lock Mounting Dimensions


The Shock Guard TGF Series can be combined with the Power Lock EL series.

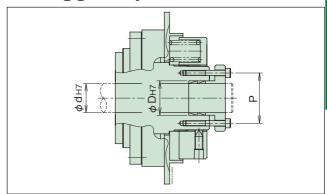
The maximum applicable sizes of the mounting geometries of the TGF series are shown below.

The transmissible torque is the value when using one power lock unit. If using multiple power lock units, multiply the transmissible torque by the coefficients shown in the table on the right.

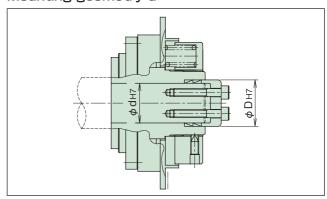

We will select the appropriate geometry if you designate your shaft dimensions and intended torque.

Mounting geometry a

TGF		Moun	ting ged	metry		Transmissible
Series size	Maximum applicable size	Ъ	D	Р	Bolt	torque Nm
TGF20	-	_	_	_	_	_
TGF30	18×22	18	22	34	M4× 6	46.1
TGF45	32×36	32	36	50	M4× 8	123
TGF65	50×57	50	57	73	M6× 8	419
TGF90	71×80	71	80	99	M8×10	1560


Mounting geometry c

TGF	٨	Nounting g	geometry		Transmissible
Series size	Maximum applicable size	д	D	Bolt	torque Nm
TGF20	20×25	20	25	M10×1	39.2
TGF30	32×36	32	36	$M 6 \times 3$	100
TGF45	45×52	45	52	M 6×8	321
TGF65	65×73	65	73	M10×4	813
TGF90	85×96	85	96	M10×8	2000


Number of units	coefficient
1	1
2	1.55
3	1.85

Mounting geometry b

TGF		Moun	ting geo	metry		Transmissible
Series size	Maximum applicable size	Ъ	D	Р	Bolt	torque Nm
TGF20	_	_	_	_	_	_
TGF30	22×26	22	26	38	M 4× 6	55.9
TGF45	35×40	35	40	55	M 5× 6	167
TGF65	65×73	65	73	91	M 8 × 8	1140
TGF90	95×106	95	106	126	M10×10	3390

Mounting geometry d

TGF	٨	Nounting g	jeometry		Transmissible
Series size	Maximum applicable size	d	D	Bolt	torque Nm
TGF20	24×28	24	28	M10×1	56.8
TGF30	36×42	36	42	M 5×6	144
TGF45	50×57	50	57	M 6×8	397
TGF65	75×84	75	84	M10×6	1260
TGF90	100×114	100	114	M12×8	3450

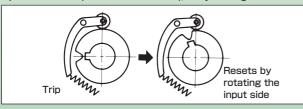
Shock Guard TGM Series

Features

Highly accurate sealed type. Excels in wet, oily and dusty environments.

Sealed construction

Covered in a special aluminum alloy casing, the TGM Series is sealed, so it is almost impossible for dust, oil or water to penetrate it. Therefore, it does not affect trip torque precision, making it an ideal overload protection device.


Non-backlash

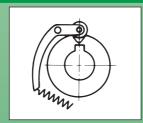
The cam follower and pocket's engagement is a 2 point contact pressed against each other, meaning there is no backlash.

Automatic reset

Once the cause of overload is removed, the Shock Guard automatically moves back to its original position by rotating the input side a little (at less than 50r/min), or by inching the motor.

Long life

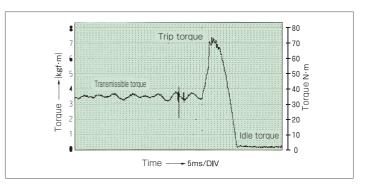
LS detecting plate for overload detector


When the Shock Guard trips the LS detecting plate slides in the axial direction, so it is easy to actuate the limit switch, shut off the power or set off the alarm. When tripping it can be used whether it stops on the camshaft side or the housing (Shock Guard case) side. The LS detecting plate can be mounted on all models.

No need to lubricate

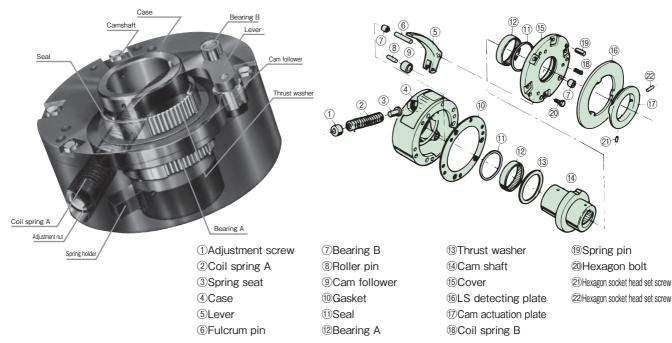
The Shock Guard TGM Series is packed in high quality grease before shipment.

One position


Because the cam follower and pocket of the cam shaft engage together, there is no phase shift between the drive side and the driven side.

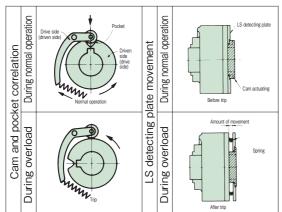
High precision trip torque

Repetitive motion torque accuracy is within $\pm 5\%$. One (1) high precision cam follower pressurizes tightly from the radial direction in the precisely machined pocket. A highly rigid and stable load rate rectangular spring is used. Trip movement is a rolling movement, so even a repeat trip produces almost no torque variation.

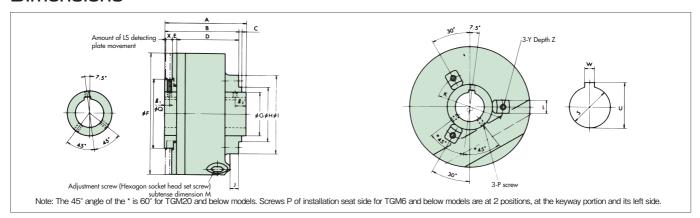

Easy to use

The camshaft and case can be used on either the drive or driven sides. As well, it can be used in either direction of rotation. For the drive member, you can choose between using a chain, pulley or gear. Assembling with a coupling is also possible. Refer to page 76 to see the assembly of a Shock Guard coupling with a roller chain coupling.

Torque setting is easy


By simply turning the adjustment screw with a hexagon wrench, precise torque can be set. As well, the adjustment nut is on the outer surface of the Shock Guard, so torque setting can be done easily.

Construction and Operating Principles


- 1. The cam follower transmits torque by engaging with the camshaft pocket in a radial direction.
 - When the machine is overloaded, the cam follower pops out of the pocket, and completely separates from the overload.
- The cam follower and pocket are precision machined and heat treated, so it is able to maintain high torque precision for extended periods of time.
- The cam follower and pocket are non-backlash, with a 2-point contact system.
- 4. Using the leverage on one rectangular coil spring pressurizes the cam follower, so it is able to give high precision pressure.

- TGM60/200/400/800 models with strong spring specifications and TGM400 and 800 models with standard specifications employ two 2 Coil spring A components.
 - 5. Torque level is infinitely adjustable with the adjustment screws.
 - 6. Due to overload, the idling during trip is received by 5 needle bearings, so there is no slide, and idling friction torque is minute.
 - 7. Because the case and cover are made from a solution treated aluminum, it has a light but strong construction.
 - 8. Due to its sealed construction, it is highly difficult for dust, water or oil to penetrate the TGM Series.
 - 9. If the Shock Guard trips because of overload, the LS detecting plate slides in the axis direction, so by operating the limit switch, overload detection is easy.

- 1. Torque is transmitted by the engagement of the cam follower and the pocket with a 2 point contact system.
 - The method to pressurize the cam follower to the cam pocket is to hold it by one rectangular coil spring in a radial direction.
 - Therefore there is no backlash, allowing it to function as a high trip torque precision overload protection device. Reset is carried out using an automatic reset system, so as the cam follower settles into its pocket position, operation resumes. As it is a two-point contact, there is no phase shift from the original position.
- 2. When overloaded, the cam follower comes out of its pocket and starts rolling on the outer diameter of the camshaft. As there is no slide section, the idling friction torque is small, making it a highly durable device. As well, the simple one position engagement construction of the TGM Series means its high trip torque precision does not diminish.
- 3. When the Shock Guard trips, the LS detecting plate slides in the axis direction. From this point, the limit switch can be actuated and the power can be turned off. The alarm can also be sounded. For each one trip, the LS detecting plate slides three times.

Dimensions

Transmissible capacity

Unit: mm

Model No.	Set torque range N·m	Max. rpm * r/min	Bore range	Stock bore diameter	Semi-standard bore diameter	Moment of inertia	Mass kg
TGM3	1.5 to 3.7	600	10 to 14	14	10, 12	0.0425	0.6
TGM6	2.5 to 6.4	600	10 to 14	14	10, 12	0.0425	0.6
TGM20	6.4 to 20	500	14 to 20	20	14, 16, 18	0.168	1.1
TGM60	20 to 69	300	20 to 30	30	20, 22, 25, 28	0.938	2.5
TGM200	68 to 225	200	28 to 50	50	30, 35, 40, 45	4.03	5.4
TGM400	225 to 451	150	38 to 60	_	60	40.0	17.2
TGM800	451 to 902	150	38 to 60	_	60	40.0	17.2

Cam shafts for semi-standard bore diameters are in stock for quick delivery.

9

131

5

	sion	S																				Unit : mm														
Model No.	А	В	U	D	Е	F	G	H h <i>7</i>	1	J	K	L	М	Р	Q	l 1	l 2	S H7	U	W	X	Υ	Z													
TGM3	60	57	2	48	3	80	22	30	50	3	40	8	5	M4	40	4	6	14	16.3	5	4	M 4	8													
TGM6	60	57	2	48	3	80	22	30	50	3	40	8	5	M4	40	4	6	14	16.3	5	4	M 4	8													
TGM20	70	66	3	57	3	100	30	40	60	4	50	10	6	M4	50	4	7	20	22.8	6	4	M 5	10													
TGM60	89	81	3	68	5	133	47.6	60	86	7	73	14	12	M5	76	6	12	30	33.3	8	6	M 6	13													
TGM200	110	100	3	85	5	178	69.9	82	133	14	114	20	12	M6	105	7	14	50	53.8	14	6	M10	19													

165

165 28

28

17 M8 124

17 M8

190

17

17

88 9 114

273 88.9 114

1.57 147 9 131 5 273

157 147

Semi-standard

1. Torque setting

TGM400

TGM800

If necessary, torque can be set at TEM's factory before shipment. Torque setting tolerance is within $\pm 5\%$. The set torque value is on the nameplate, and the adjustment nut is coated with Loctite 242, or its equivalent, and tightened. When ordering, indicate set torque value (kgf · m) after bore diameter. (Please refer to the table on the right)

2. Weak spring and strong spring specifications

For when it is necessary to operate with a trip torque other than the standard torque value range:

- (1) TGM6 and TGM800 do not have weak spring specifications.
- (2) The standard torque range can be replaced by weak or strong spring torque ranges on the nameplate.
- (3) The minimum and maximum torque indicator on the nameplate does not change for the weak and strong springs.
- (4) When ordering, indicate weak spring (WS) or strong spring (SS) in the last part of the product number.

Model No.	Weak spring, torque range N·m kgf·m	Reinforced spring, torque range N·m kgf·m
TGM3(C)	0.59 to 1.5 {0.06 to 0.15}	
TGM6(C)		6.0 to 12.7 (0.61 to 1.3)
TGM20(C)	3.7 to 12 (0.38 to 1.2)	7.3 to 23 0.74 to 2.3
TGM60(C)	7.6 to 26 (0.78 to 2.7)	44 to 105 {4.5 to 10.7}
TGM200(C)	30 to 98 {3.1 to 10}	101 to 289 {10.3 to 29.5}
TGM400(C)	118 to 235 {12 to 24}	
TGM800(C)		532 to 1060 {54.3 to 108}

60

16

16 60 18

8 M12

64.4

64.4 18 8 M12 28

28

7

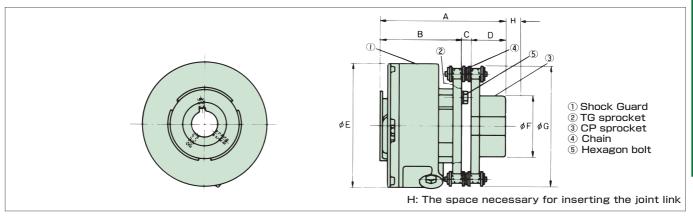
7

124

^{2.} The keyway is made with JIS1301-1996 (new JIS standard) dimensions.

¹⁹⁰ *1. The model numbers in bold are stock items, and the rest are assembled for shipment. 2. The keyway is made with JIS1301-1996 (new JIS standard) dimensions.

^{3.} Minimum torque is set temporariry when shipped



Coupling type-sprocket combination

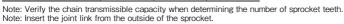
■ Coupling type

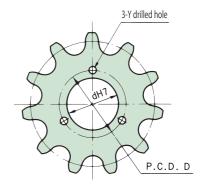
This is the Shock Guard and roller chain coupling combination series. It is a Shock Guard with high trip torque accuracy and an easy to use roller chain coupling, all in one. It is ideal for direct coupling between the drive and driven machines. (In the case it is coupled with a non-backlash coupling, contact TEM for a consultation.)

Transmissible Capacity/Dimensions

Unit: mm

Coupling Type	pe Set torque range . N·m			hock Guard bore		Coupling					Е	F	G	Н	Sprocket	Mass kg	Moment of inertia						
Model No.			Standard bore diameter	Semi-standard bore diameter	Rough bore Maximum bore	A B	В	ВС															
			H7	H7	diameter	diameter										ņ							
тдм3С	1.5 to 3.7	600	400	400	400	400	400	400	14	10,12	12.5	30	90	64.2	5.8	20	80	50	70	0	RS35-20	1.12	0.07
TGM6C	2.5 to 6.4		14	10,12	12.5	30	90	04.2	3.0	20	80	30	70	7	K333-20	1.12	0.07						
TGM20C	6.4 to 20	500	20	14,16,18	12.5	32	100	72.2	5.8	22	100	53	82	7	RS35-24	1.78	0.218						
TGM60C	20 to 69	300	30	20,22,25,28	12.5	42	120.6	88.2	7.4	25	133	63	11 <i>7</i>	17	RS40-26	4.15	1.21						
TGM200C	68 to 225	200	50	30,35,40,45	18	55	163.3	111. <i>7</i>	11.6	40	178	83	188	26	RS60-28	11.8	6.80						
TGM400C	225 to 451	150	150	150	1.50	_	60	28	75	221.0	161.6	15 2	15	272	107	251	20	RS80-28	31	50.8			
TGM800C	451 to 902				_	00	20	/3	221.7	101.0	13.3	43	2/3	107	231	30	K30U-20	31	30.8				


All model numbers are MTO.


■ Sprocket combination

When using a sprocket with a drive member, select the appropriate sprocket from the chart below.

This table shows the available sprocket machining dimensions.

			Unit : mm				
Shock Guard	Finished sprocket dimensions						
Model No.	d ^{H7}	D	Υ				
TGM3	30	40	4.5				
TGM6	30	40	4.5				
TGM20	40	50	5.5				
TGM60	60	73	6.6				
TGM200	82	114	11.0				
TGM400	114	165	14.0				
TGM800	114	165	14.0				

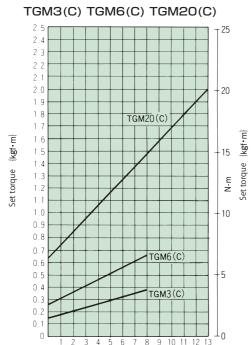
^{2.} Apply the lubricant such as molybdenum disulfide to the chain and top of the sprocket teeth periodically (every 2000 hours).

Torque setting

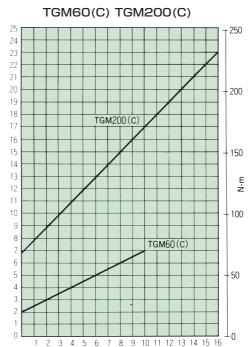
By simply turning the adjustment screw with a hexagon wrench, precise torque can be set.

 The minimum torque value is set for shipment. The top surface of the adjustment screw is adjusted to the minimum torque (torque indicator 1) printed on the nameplate. This is the base tightening quantity.

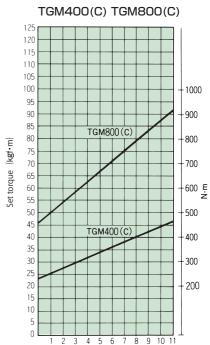
- Before setting the torque, apply Loctite 242 or an equivalent adhesive to the exposed surface of the adjustment screw's thread portion. After setting torque, it becomes anti-loosing.
- 3. From the "Tightening Amount-Torque Correlation Chart" (below), find the adjustment screw tightening angle equivalent to the predetermined trip torque and tighten them. Set at 60° toward the determined tightening value, then install to the machine and conduct a trip test. Gradually tighten and set at optimum trip torque. Each product's trip torque does not always correspond with the value listed in the "Tightening Amount Torque Correlation Chart", so use these values only as a rough


guide.

- 4. Do not set torque lower than the minimum torque (torque indicator 1 on the nameplate). If it is necessary to use a torque level lower than the minimum, use a weak spring type.
- Do not turn the adjustment screw when the Shock Guard is in a tripped state.
- 6. Torque setting before shipment is available. (Please refer to page 65).


Model No.	Amount of torque variation per one (1) rotation N·m kgf·m	Total number of rotations		
TGM3	0.28 (0.029)	8		
TGM6	0.48 (0.049)	8		
TGM20	1.02 (0.10)	13		
TGM60	4.90 (0.5)	10		
TGM200	9.80 {1.0}	16		
TGM400	20.6 {2.1}	11		
TGM800	41.2 (4.2)	11		

Set torque = min. torque + (amount of torque variation per one (1) rotation X total number of rotations of the adjustment screw)


Tightening Amount-Torque Correlation Chart

No. of rotations of the adjustment screw.

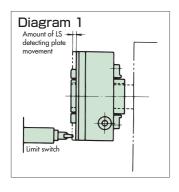
No. of rotations of the adjustment screw.

No. of rotations of the adjustment screw.

Overload detection

Using the limit switch, overload can be detected easily. If the Shock Guard trips due to overload, the cam follower will disengage from the pocket and the camshaft and main unit (case) will idle. At the same time, the LS detecting plate slides in the axial direction.

The limit switch detects this movement, shuts the power off and sets off an alarm. Whether the stopping side is on the camshaft side or the main unit case side, overload can be detected. For every one trip, the LS detecting plate slides three times.


- (1) Table 1 shows LS detecting plate movement and force during trip.
 - Choose a limit switch from Table 1 that meets the "movement until operation" and its "necessary amount of force".
- (2) Diagrams 1 and 2 are limit switch installation examples.

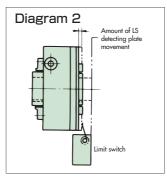
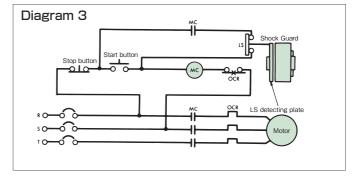
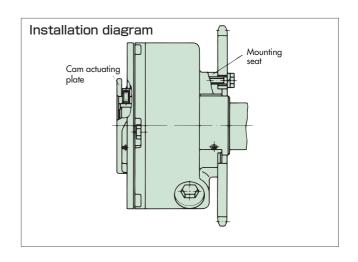

- (3) Connect the limit switch's "b contact" parallel to the start button's contact.
- (4) Diagram 3 shows an example of a typical circuit. TEM recommends using a self-holding circuit.

Table 1


Model No.	Amount of movement mm	Force when moving N {gf}
TGM3	4	3.9 {400}
TGM6	4	3.9 {400}
TGM20	4	3.9 {400}
TGM60	6	3.9 {400}
TGM200	6	5.4 (550)
TGM400	8	5.9 {600}
TGM800	8	5.9 (600)

■ Limit Switch Installation Example

■ Circuit Example


Installation

1. Installing to the axis

- A shaft diameter tolerance of h7 for installing the Shock Guard to the shaft is recommended.
 Use a JIS 1301-1996 (New JIS standards) parallel key.
 Allow some clearance between the top of the key and keyway
- When installing the cam actuating plate to the shaft, tighten bolts in three places. (For the key, 1 place; for the shaft, 2 places)
- When mounting the Shock Guard to the end face of the shaft, depending on the installation method, the cam actuating plate set screws cannot be used. In this case use the tap holes on the mounting seat side. Set screws for these tap holes are not included, so use bolts with a length that fits the bore diameter. <u>Take</u> <u>care to ensure that the head of the set screws do not</u> <u>come out from the outer diameter of the camshaft. If</u> <u>the head of the screws come out, they will interfere</u> <u>with the inner diameter and lateral side of the</u> <u>mounting seats when the Shock Guard trips.</u>
- If during operation there is a chance vibration will cause the screws to loosen, apply Loctite 242 or an equivalent for anti-loosening.

2. Installation of drive member

- By utilizing 3 mounting seats, tighten the bolts with the torque shown in Table 2 to install the sprockets, pulleys, gears and couplings to the housing.
- Refer to page 66 for sprocket installation. If it is necessary to combine a TSUBAKI Power Lock (keyless locking device) with a non-backlash coupling, contact TEM for a consultation.

3. Installation bolts

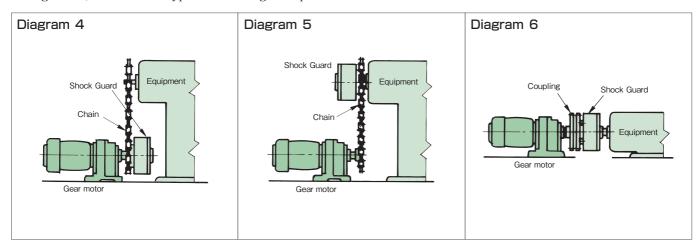

The screw-in length of the mounting seat installation bolts and their tightening torque recommended values are listed on table. As well, use JIS B1001 2 class and lower class for rough bore for installation bolts.

Table 2

Model No.	Bolt screw-in length (mm)	Bolt tightening torque $N \cdot m \mid kgf \cdot m \mid$	Prepared hole diameter for installation bolt (mm)
TGM3	6 to 7	2.0 to 2.9 (0.2 to 0.3)	4.5
TGM6	6 to 7	2.0 to 2.9 (0.2 to 0.3)	4.5
TGM20	8 to 9	3.9 to 5.9 (0.4 to 0.6)	5.5
TGM60	9 to 11	6.9 to 11 {0.7 to 1.1}	6.6
TGM200	15 to 17	34 to 51 {3.5 to 5.2}	11.0
TGM400	18 to 25	59 to 89 {6.0 to 9.1}	14.0
TGM800	18 to 25	59 to 89 {6.0 to 9.1}	14.0

4. Connecting

The input/output connection is placed between the variator, reducer or intermittent drive device and the device/machine. Diagrams 4, 5 and 6 show typical connecting examples.

Resetting

As it is an automatic reset system, just re-starting the drive side can automatically reset it.

- 1. When the Shock Guard trips due to overload, stop the rotation and remove the cause of the overload.
- When resetting, reset (re-engage) with input rpm at less than 50r/min or by inching the motor. To avoid injury, do not reset the Shock Guard main unit or the shaft by hand.
- 3. A distinct clicking sound is made when the cam follower settles in its pocket.

Grease

Shock Guard TGM Series are packed in high quality grease before shipment, so they can be used as is. Under normal conditions greasing is not necessary.

Grease used:

EMG Marketing	Mobilux EP-2
------------------	--------------

MEMO		

Shock Guard
TGM Series

Shock Guard TGZ Series

Features

TGZ Series can be used as a simple layout release type protection device or an ON-OFF clutch.

Release type

After tripping due to overload, the input side freely rotates. Even a high-speed shaft can be operated worry-free.

Resetting by external force

After the Shock Guard has been stopped, remove the cause of overload. Then give load to the axial direction manually or with external force.

ON-OFF function

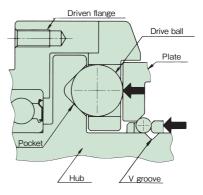
The rotation (ON) or shut-off (OFF) functions are available arbitrarily. They can be used as an accurate mechanical type ON-OFF clutch.

Easy torque adjustment

Just by turning the adjustment nut, trip torque can be easily set.

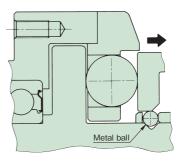
Easy to see torque indicator

By using the revolution indicator and angle indicator, set torque can be monitored at any time.


One position type

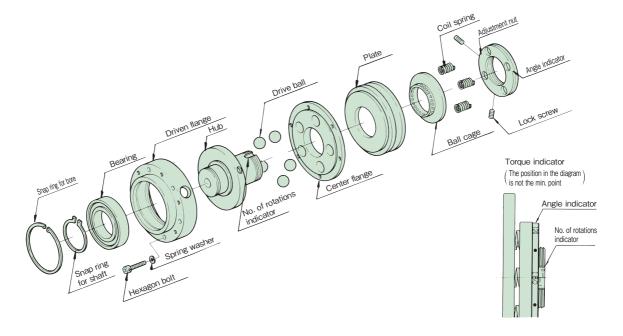
This uniquely assembled torque transmission element ball and pocket configuration only engages in one position.

Operating Principles

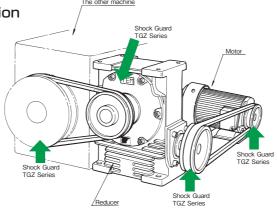

During normal operation (engagement)

Torque transmission is made by a drive ball which is pressurized and retained at the hub pocket and the driven flange.

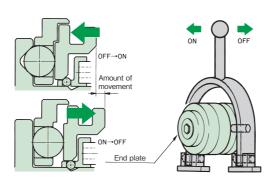
The non-symmetric arrangement of the balls and pockets allows only one engagement position per one rotation, and there is no phase shift after tripping.


During overload (trip)

When overloading (when OFF), a drive ball instantly pops out of its pocket, and the plate and a steel ball simultaneously move to the adjustment nut side.


A drive ball comes completely out of its pocket and a steel ball enters the hub outer circumference V-groove, and the pressure from the springs is not transferred to the plate. Therefore, a drive ball freely rotates without returning to the pocket.

Construction



Applications classified by use

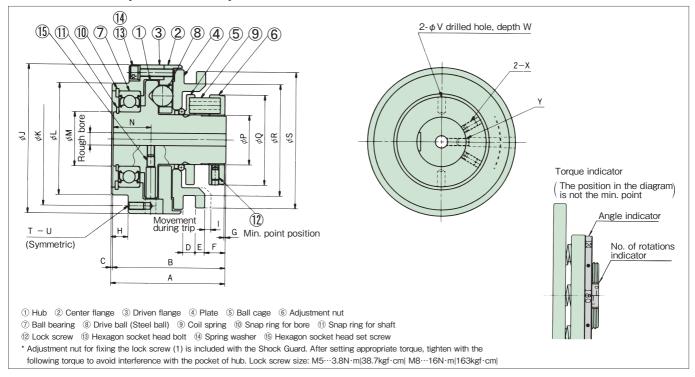
Overload protection

2. ON-OFF clutch

As demonstrated in the diagram on the left, the TGZ Series can be installed with any motor shaft, reducer (variator) or other machines. When considering the layout, make sure to leave sufficient space to adjust torque and for resetting procedures. After removing the cause of overload, do not reset the machine while it is running.

⚠ If the Shock Guard is reset during rotation, the machine will suddenly run.

By using manual or mechanical external force (pneumatic, hydraulic, etc.), the plate can be moved, cutting off the input rotation (OFF) or transmitting it (ON). The necessary axial load for turning the machine ON or OFF is written in the table below.


Necessary shaft direction load when ON-OFF

Actuation Model No.	OFF → ON N {kgf}	ON → OFF N {kgf}	Amount of movement mm
TGZ20-L	49 { 5}	245 { 25}	
TGZ20-M	88 { 9}	431 { 44}	4.1
TGZ20-H	176 {18}	862 88	
TGZ30-L	98 {10}	470 { 48}	
TGZ30-M	235 {24}	1176 {120}	4.7
TGZ30-H	470 {48}	2352 {240}	

Actuation Model No.	OFF → ON N {kgf}	ON → OFF N {kgf}	Amount of movement mm
TGZ40-L	157 { 16}	774 { 79}	
TGZ40-M	421 { 43}	2087 {213}	5.9
TGZ40-H	833 { 85}	4155 (424)	
TGZ50-L	451 { 46}	2269 {231}	
TGZ50-M	902 { 92}	4518 (461)	7
TGZ50-H	1382 {141}	6919 (706)	

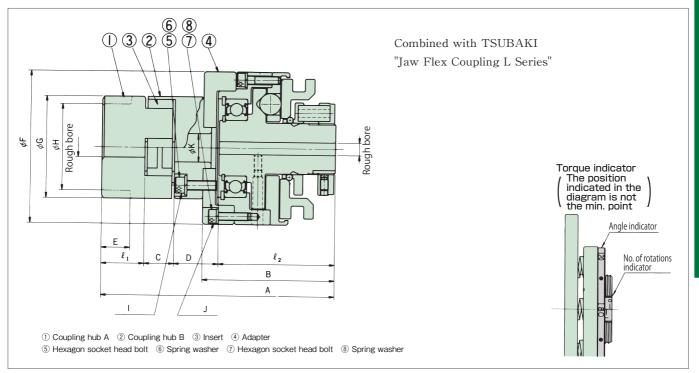
Axial load fluctuates depending on the number of actuations and usage conditions. Set the load with margin.

Shock Guard (TGZ Series)

Unit : mm

Shock Guard Model No.	Set torque range N·m	Max. rpm	Coil spring color X the number	Rough bore diamter	Min. bore diameter	Max. bore diameter	А	В	С	D	E	F	G min. point position	Н	I amount of movement during trip	J	K PCD
TGZ20-L	2.4 to 8.3		Yellowx3														
TGZ20-M	4.1 to 16	1800	Blue ×3	8	10	20	74	73	1	8	6	13.5	8.0	11	4.1	96	86
TGZ20-H	8.2 to 31		Blue ×6														
TGZ30-L	5.9 to 21		Yellowx4														
TGZ30-M	20 to 52	1800	Red ×4	12	14	30	83.5	82	1.5	8	6	14.5	1.1	11.5	4.7	118	106
TGZ30-H	39 to 108		Red ×8														
TGZ40-L	25 to 93		Blue ×5														
TGZ40-M	44 to 127	1800	Red ×5	17	19	40	101	100	1	9	8	20	1.1	14	5.9	152	139
TGZ40-H	88 to 245		Red ×10														
TGZ50-L	63 to 1 <i>5</i> 7		Red ×5														
TGZ50-M	127 to 304	1800	Red ×10	22	24	50	114.5	112	2.5	10	9	20.2	1.2	16	7	178	162
TGZ50-H	245 to 451		Green×10														

Shock Guard Model No.	L h <i>7</i>	м	N	Р	Q	R	S	Т	U screw diameter X length	٧	W	X screw size X length	Y screw size X length	* Mass kg	Moment of inertia $\times 10^{-2} \text{kg} \cdot \text{m}^2$
TGZ20-L															
TGZ20-M	72	35	24.5	32	57	70	88	4	M5×10	5	10	M5×10	M5×10	2.57	0.273
TGZ20-H															
TGZ30-L															
TGZ30-M	87	45	27.5	45	75	88	108	4	M6×12	6	10	M5×10	M6×10	4.17	0.695
TGZ30-H															
TGZ40-L															
TGZ40-M	114	65	32.5	65	103	119	141	6	M6×12	8	14	M8×10	M8×10	8.71	2.40
TGZ40-H															
TGZ50-L															
TGZ50-M	133	75	37	75	113	138	166	6	M8×16	9	14	M8×10	M8×10	13.7	5.30
TGZ50-H															


^{*1.} All products are stock items.

^{2.} Mass and moment of inertia are based on the bores' maximum diameters.

Unit: mm

TGZ Series

Coupling type

Shock Guard	Set torque range	Max. rpm	Sh	ock Gu	ard		Louplin	g	Α	В	С	D	l 1	l . 2	Е
Model No.	N·m	r/min	Rough bore diamter	Min. bore diameter	Max. bore diameter	Rough bore diamter	Min. bore diameter	Max. bore diameter		В		D	Ł'	Ų ²	Е
TGZ20-LC	2.4 to 8.3														
TGZ20-MC	4.1 to 16	1800	8	10	20	12.7	16	35	146	83	18.8	27.2	27	73	_
TGZ20-HC	8.2 to 31														
TGZ30-LC	5.9 to 21														
TGZ30-MC	20 to 52	1800	12	14	30	18.0	21	47	180	93.5	22.6	32.5	42.9	82	_
TGZ30-HC	39 to 108														
TGZ40-LC	25 to 93														
TGZ40-MC	44 to 127	1800	17	19	40	19.1	22	58	213	111	26.1	32.9	54	100	34.9
TGZ40-HC	88 to 245														
TGZ50-LC	63 to 157														

19.1

63

22

242

127.5 26.1

40.4

112

63.5

34.9

Shock Guard Model No.	F	G	Н	I No. of pieces- screw size X length	J No. of pieces- screw size X length	* Mass kg	* Moment of inertia × 10 - 2kg·m²	Model No. of coupling used	К	Allowable angular misalignment (deg.)	Allowable parallel misalignment	Allowable shaft direction displacement
TGZ20-LC												
TGZ20-MC	96	64.3	_	$3-M6 \times 20$	$4-M5 \times 22$	4.34	0.44	L099-H	27	0.5	0.38	±0.5
TGZ20-HC												
TGZ30-LC												
TGZ30-MC	118	84.1	_	6-M6×22	$4-M6 \times 22$	7.77	1.22	L110-H	40	0.5	0.38	±0.7
TGZ30-HC												
TGZ40-LC												
TGZ40-MC	152	114.3	101.6	6-M6×25	6-M6×25	15.4	4.05	L190-H	54	0.5	0.38	± 1.0
TGZ40-HC												
TGZ50-LC												
TGZ50-MC	1 <i>7</i> 8	127	107.9	6-M8×25	6-M8×25	23.2	8.63	L225-H	60	0.5	0.38	± 1.0
TGZ50-HC												

^{*1.} All products are stock items.

TGZ50-MC

TGZ50-HC

127 to 304

245 to 451

1800

22

24

50

 $[\]dot{\text{2.}}$ Mass and moment of inertia are based on the bores' maximum diameters.

Handling

1. Bore finishing (Shock Guard)

(1) Before finishing

The Shock Guard TGZ Series is shipped set at the minimum point (minimum torque value). Once received, confirm that the revolution indicator and angle indicator are set at zero.

(2) Disassembly

Loosen the setscrews, remove the adjustment nut and take out the coil springs, ball cage, plate and balls. Next, take out the shaft snap ring, and remove the bearing and driven flange. When disassembling, take care not to lose the ball B at s ball cage. Make sure the Shock Guard parts do not become dusty or dirty.

(3) Chucking

Chuck the hub flange's outside diameter and center the hub portion.

(4) Machining

① Keyway specifications

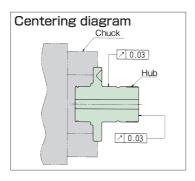
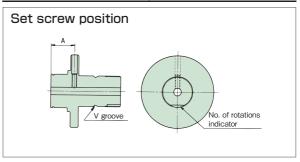

Table 1 shows the maximum bore diameters for keyway specifications.

Table 1

Model No.	Max. bore diameter	Applicable standard
TGZ20	$\phi 20$	parallel key
TGZ30	$\phi 30$	
TGZ40	$\phi 40$	New JIS
TGZ50	$\phi 50$	Old JIS

② Centering

Chuck the hub flange's outer edge and center the hub as shown in the figure on the right.



(3) Machining

The keyway should be machined directly below the setscrew tap at the hub flange section as shown below.

Table 2

Model No.	A
TGZ20	24.5
TGZ30	27.5
TGZ40	32.5
TGZ50	37.0

(5) Reassembly

After bore finishing is completed and when reassembling the Shock Guard, make sure to coat the drive balls, steel balls, pockets, and the V-groove with grease.

2. Bore finishing (Coupling type)

(1) Machining

① Keyway specifications

Table 3 shows the maximum bore diameters on the coupling side. For the maximum bore diameters of the Shock Guard hub, refer to Table 1.

② Centering

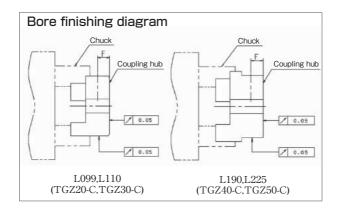
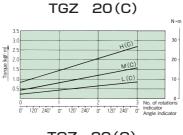
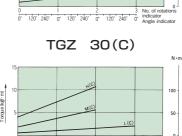
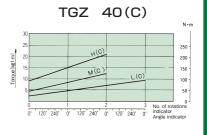

Chuck the coupling hub's outer edge and center the hub as shown in the below diagram. For the recommended positions of the coupling hub setscrew, refer to Table 4 (Length F).

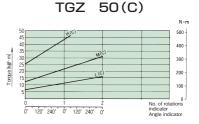
Table 3

Model No.	Max. bore diameter	Applicable standard
TGZ20	φ 35	Parallel kev
TGZ30	$\phi 47$	_
TGZ40	φ 58	New JIS
TGZ50	φ63	Old JIS

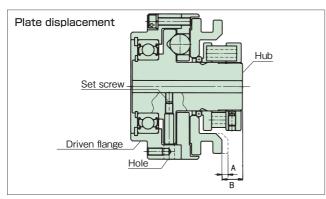

Table 4

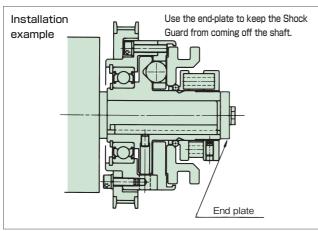

Model No.	Coupling model No.	Length F
TGZ20-C	L099-H	13.5
TGZ30-C	L110-H	20.5
TGZ40-C	L190-H	25.5
TGZ50-C	L225-H	25.5




TGZ Series

- **3. Trip Torque setting**(1) Shock Guard TGZs are all shipped with torque set at the minimum point (min. torque value). Confirm that the angle indicator and the No. of rotations indicator are set at zero. The No. of rotations indicator can be read at the end face of the adjustment nut. Refer to page 73 for more information.
- (2) From the "Tightening Amount-Torque Correlation Chart", find the adjustment nut tightening angle equivalent to the predetermined trip torque and tighten them. Set at 60° toward the determined tightening value, then install to the machine and conduct a trip test. Gradually tighten and set at optimum trip torque.
- (3) After setting torque, screw the lock screw to the adjustment nut. Refer to page 32 for lock screw tightening torque and precautions.
- (4) Do not turn the adjustment nut (bolt) more than the torque indicator's maximum value. Doing so will put it in a locked position, and there will be no leeway for the disk spring
- Each product's trip torque does not always correspond with the value listed in the "Tightening Amount Torque Correlation Chart", so use these values only as a rough guide.





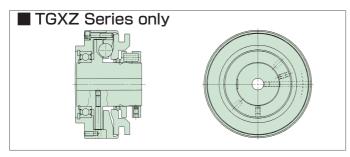
4. Resetting

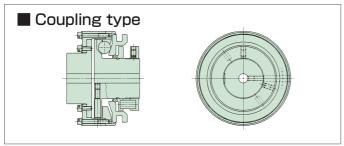
Match up one hole of the driven flange with the hub side's setscrew position. (This position is the pocket and drive ball's correct phase.)

Next, apply axial load to the plate to reset (refer to the following table). To determine whether the Shock Guard has completely reset, verify it using the measurements of the table below (displacement A).

Model No.	Axial load N {kgf}	Amount of displacement A mm	B mm	
TGZ20-L	49 (5)			
TGZ20-M	88 {9}	4.1	13.5	
TGZ20-H	176 {18}			
TGZ30-L	98 {10}			
TGZ30-M	235 {24}	4.7	14.5	
TGZ30-H	470 (48)			
TGZ40-L	157 {16}			
TGZ40-M	421 {43}	5.9	20.0	
TGZ40-H	833 {85}			
	451 (46)			
TGZ50-M	902 (92)	7.0	18.2	
TGZ50-H	1382{141}			

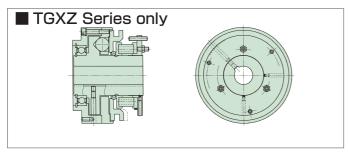
Maintenance

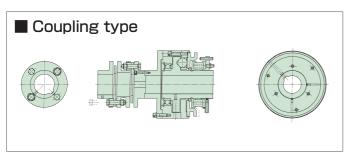

Grease the drive ball and ball cage either once per year or every thousand trips.



Special Specifications

TGXZ Series


Non-backlash and complete release type. With its high-speed specifications (up to 1800r/min), it is ideal for when instant stop is not possible. Please contact TEM for more information.



TGZ Large Series

For the application of setting torque $451\mathrm{N}\cdot\mathrm{m}$ and above, please contact TEM for more information.

MEMO		

TGZ Series

Features

A multifunctional product combining a ball type overload protection device and an air clutch function.

Pneumatic torque adjustment mechanism

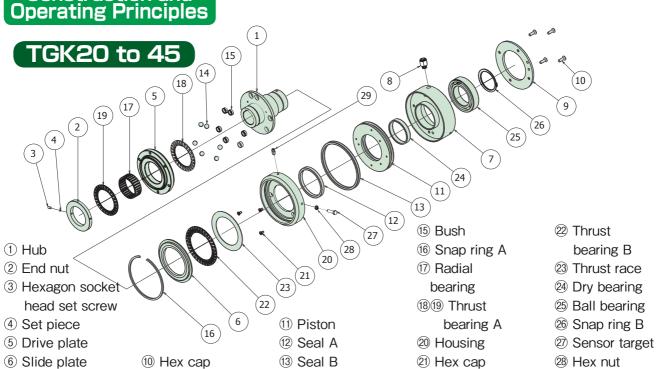
You can remotely adjust the torque during operation by adjusting the air pressure in the regulator.

One position type

This uniquely assembled torque transmission element ball and pocket configuration only engages in one position.

High accuracy

Achieves minimal backlash.


Air clutch ON-OFF mechanism

Also usable as an ON-OFF clutch in remote control.

	TGK							
Type 2	Enables direct mounting of A type sprockets and pulleys.							
Type 5	The Echt-Flex Coupling provides angular tolerance. Parallelism errors are not allowed.							
Type 7	The Echt-Flex Coupling provides angular tolerance and parallelism tolerance.							

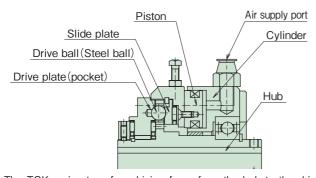
Construction and Operating Principles

(14) Drive ball

(Steel ball A)

TGK20 to 45

(7) Cylinder


8 Pipe joint

9 Cylinder cover

During normal operation (engagement)

countersunk

screw

The TGK series transfers driving force from the hub to the drive plate on the output side via drive balls (and vice versa).

Bolt a sprocket or timing pulley directly to the drive plate.

The hub flange has several holes to hold the drive balls.

There are pockets on the drive plate on the output side, and the drive balls are fitted into

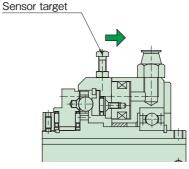
the pockets.

If you feed air into the cylinder through the air supply port, the piston moves toward the drive plate.

Then, the drive balls are pushed via the slide plate and transfer the driving force.

You can change the torque according to the load during operation. You can also change the torque automatically by making a system to change the pressure using a timer or

For instance, by using such a system to switch between a high torque corresponding to the starting torque and a low operating torque, you can set the torque to the optimal value for the


When an overload occurs, the drive balls push back the slide plate toward the cylinder against the air pressure. The drive balls then come out of the pockets and start to idle.

During overload (trip)

countersunk

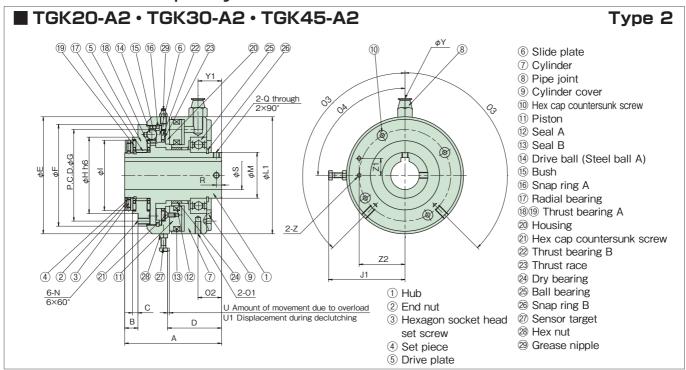
screw

29 Grease nipple

By detecting the amount of movement of the sensor target toward the cylinder by a limit switch and removing the force applied to the drive balls by removing the air from the cylinder, you can completely release the driving force and protect the machine.

Clutch mechanism

To disconnect the drive source for adjustment or maintenance of the machine, stop feeding air and remove the air from the cylinder. The housing and slide plate are then pushed back toward the cylinder by the built-in spring.


Consequently, the drive balls come out of the pockets on the drive plate for declutching.

The drive plate has a bearing inside, and therefore there are no problems even if the drive plate is left to idle for a long period of

Resetting (clutching) procedure

If you supply air from the air supply port and restart the operation, the drive balls automatically return to their positions within one

If you continue to rotate the TGK series while feeding air after the occurrence of an overload, the TGK series repeatedly reset. Therefore, detect overloads using a limit switch or a similar device and stop feeding air.

Unit: mm

	C.11		A 4		۸٠		S	hock (Guard	S							G	Н	
Model No.		l·m		c. rpm min ^{*1}		oressure MPa	Rough bore diamter	Min. bore diameter	,	ray for max. re dia.	Α	В	С	D	Е	F	P.C.D.	h6	ı
TGK20-A2	15	to 65	3	40	0.14	to 0.55	8	10	:	20	79	11	3.5	45.5	88	80	70	57	51
TGK30-A2	30	to 147	2	30	0.14	to 0.55	10	12	;	30	95	13	5.5	53	115	100	90	75	69
TGK45-A2	90	to 392	4	30	0.14	to 0.55	20	22		45	124	15.5	7	74.4	159	140	125	100	94
Model No.	J1	L1	М	N sc		O1 scre					0.5	crew					А	ir supply	
			//\	lenç	-	diameter length		02	O3	04	diam		R*2		U	U1	l	port Y ^{*3}	Y1
TGK20-A2	61	88	30		gth				O3 135°	90°	diam		R*2 5		1.2	1.8			Y1 21
TGK20-A2 TGK30-A2	61			lenç	gth 9	length	0 2	21			diam	eter*2					8	'Y*3	

Model No.	Screw diamter × length	Facing diameter × Depth	Z1	Z2	Mass*4 kg	Moment of inertia ^{*4} kg·m ²	Allowable radial load N
TGK20-A2	M4×10	ϕ 5 × 3.5	15	35	2.3	0.00061	6200
TGK30-A2	M4×10	φ 5 × 4.5	16.5	45	4.6	0.00201	9500
TGK45-A2	M5×10	φ6×5	20	65	11.2	0.00854	12700

^{*1.} Contact us for details on use at speeds higher than the maximum speed.

^{2.} Setscrew taps are not processed. Dimensions are for reference only.

^{3.} Y represents the outer diameter of the applicable tube.

^{4.} Mass and moment of inertia are based on the bores' maximum diameters.

Note) When installing a pulley or sprocket, use high-tensile bolts (G10.9 or higher) and determine the length carefully so that the bolts are not buried deeper than the mounting tap depth N.

The air supply port is a pipe joint applicable to both nylon and urethane tubes.

An example of the installation of a limit switch is shown on page 84.

■ TGK20-A5 • TGK30-A5 • TGK45-A5 Type 5 2-Q1 through 2×90° 2-Q through 2×90° 0 <u>R1</u> δF1 bS 1 ΦE1 1 Mounting adapter 2 Coupling hub 3 Reamer bolt 4 Washer A (5) Washer B 2-01 6 Disk (11)U Amount of movement due to overload 4-N1 7 U nut U1 Displacement during declutching В2 8 Hex cap bolt 2-P1 This is acombination of the 9 Spring washer B1 TGK-A2 and the Echt-Flex Coupling NEF Series Single Type. 10 Hexagon socket head set A2 screw 11) Set piece

Unit: mm

																					• • • • • • • • • • • • • • • • • • • •	
Model No.	Set torqu	•	Max.	4.1	Air pre MP		Rough bore	Min. bore	JIS keyway fo	r max. Roug	h bore	oupling Min. bore	JIS keyway for	III WALL	А	A1	A2	А3	B1	B2	C1	D
TGK20-A5	15 to	o 65	340	0	0.14 to	0.55	diamter 8	diameter 10	bore dia		mter 5	diameter 17	bore dia.		79	33.5	88.3	133	24.5	14	11.2	45.5
TGK30-A5	30 to	o 147	230	0	0.14 to	0.55	10	12	30) 1	5	17	60		95	47.8	115.5	175	33.8	22	11.7	53
TGK45-A5	90 to	o 392	430	0	0.14 to	0.55	20	22	45	2	5	27	74	1	24	57.2	137.5	211.5	43.2	17	16.8	74.4
Model No.	El	F1	J1	L1	М	N1 scre diamter length	× di	l screw ameter length	O2	O3	04	P1 scre diame ×leng	ter diame	eter c	Q1 screw diameter	R*2	R1	*2	U	U1	Air supply port Y ^{*3}	Y1
TGK20-A5	104	61	61	88	30	M5×2	20 M	5×10	21	135°	90	° M4×	6 M	5	M5	5	8	3 1	.2	1.8	4	21
TGK30-A5	143	84	75	115	45	M6×2	25 M	5×12	23	135°	90	° M5×	6 M	6	M6	5	12	2 1	.8	2.0	8	23
TGK45-A5	168	106	98	159	60	M8×2	25 M8	3×15	34	120°	90	° M5×	6 M	8	M8	8	15	5 2	2.2	2.9	8	34
Model No.	Screw o		Facing did × De		Z1	Z2	Mas ke		ment of i			Couplir odel N		Χ*5		Allo Ang isalignn			Shaft o	ment direction cement*		
TGK20-A5	M4	×10	φ5×	3.5	15	35	4.	2	0.003	19	N	EF25S		21		1			±	1.4		
TGK30-A5	M4:	× 10	φ5×	4.5	16.5	45	9.	9	0.016	4	NI	EF80S		29.	5	1			±	1.8	_	

0.0359

NEF130S

20

1

 $\pm\,2.5$

- ϕ 6×5 *1. Contact us for details on use at speeds higher than the maximum speed.
- 2. Setscrew taps are not processed. Dimensions are for reference only.
- 3. Y represents the outer diameter of the applicable tube.

 $M5 \times 10$

- 4. Mass and moment of inertia are based on the bores' maximum diameters.
- 5. This is the space required for the insertion of a reamer bolt.
- 6. The allowable displacement in the shaft direction is the value when the angular error is zero.

20

18.4

Note) The air supply port is a pipe joint applicable to both nylon and urethane tubes.

An example of the installation of a limit switch is shown on page 84.

Parallelism errors are not allowed.

TGK45-A5

■ TGK20-A7 • TGK30-A7 • TGK45-A7 Type 7 2857643 2-Q1through 2×90° 2-Q through 2×90° φN φL1 φF1 φS1 φE1 1 Mounting adapter 2 Coupling hub 3 Long spacer 4 Reamer bolt ⑤ Washer A 4-N1 12 10 6 Washer B 2-P1 7 Disk ® U nut U Amount of movement due to overload U1 Displacement during declutching 9 Hex cap bolt 10 Spring washer B1 C1 This is acombination of the TGK-A2 and the Echt-Flex Coupling NEF 1) Hexagon socket head set Α1 Α2 Series Long Spacer Type. screw АЗ 12 Set piece

Unit: mm

	C-11		A A		۸:		Sh	ock Gu	ard S		Со	upling	S1									
Model No.		e range · m	Max. r/mi		Air pre MP		Rough bore diamter	Min. bore diameter	JIS keyway fi bore di		h bore mter	Min. bore diameter	JIS keyway for ma bore dia.	Α Α	A1	A2	A3	B1	B2	C1	C2	D
TGK20-A7	15 t	o 65	34	0	0.14 to	0.55	8	10	20) 1	5	17	42	79	33.5	88.3	221.8	24.5	14	11.2	100	45.5
TGK30-A7	30 t	o 147	23	0	0.14 to	0.55	10	12	30) 1	5	1 <i>7</i>	60	95	47.8	115.5	290.3	33.8	22	11.7	127	53
TGK45-A7	90 t	o 392	43	0	0.14 to	0.55	20	22	45	5 2	5	27	74	124	57.2	137.5	334.7	43.2	17	16.8	140	74.4
Model No.	E1	F1	J1	L1	М	N1 scre diamter length	× di	l screw ameter length	O2	O3	04	P1 scre diamet ×leng	er diamete			*2 F	R1*2	U	U1		upply	Y1
TGK20-A7	104	61	61	88	30	M5×2	20 M3	5×10	21	135°	90°	M4×	6 M5	M.	5 5	5	8	1.2	1.8	3 4	4	21
TGK30-A7	143	84	75	115	45	M6×2	25 M	5×12	23	135°	90°	M5×	6 M6	Mo	5 5	5	12	1.8	2.0)	8	23
TGK45-A7	168	106	98	159	60	M8×2	25 M8	3×15	34	120°	90°	M5×	6 M8	M	3 8	3	15	2.2	2.9)	8	34
Model No.	Srew dic		Facing did		Z1	Z2	Mas ke		ment of i			Couplin odel N		X*5	Anç misalign	gular	S	ole M haft dir isplace	ection		Parall	el ment
TGK20-A7	M4:	× 10	φ5×	3.5	15	35	5.	7 (0.0054	40	NE	F25W	/ 2	1		2		± 2	.8		1.5	
TGK30-A7	M4:	× 10	φ5×	4.5	16.5	45	13.	8 (0.0276	5	NE	F80W	/ 2	9.5		2		± 3	.6		2.0	
TGK45-A7	M5:	× 10	φ6×	5	20	65	23.	5 (0.0573	3	NE	F130\	W 2	0		2		± 5	.0		2.1	

^{*1.} Contact us for details on use at speeds higher than the maximum speed.

^{2.} Setscrew taps are not processed. Dimensions are for reference only.

^{3.} Y represents the outer diameter of the applicable tube.

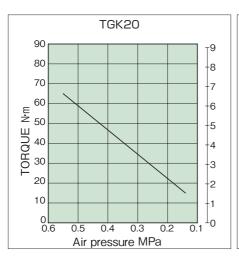
^{4.} Mass and moment of inertia are based on the bores' maximum diameters.

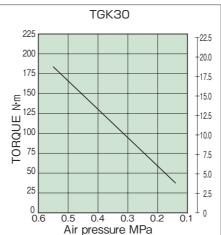
^{5.} This is the space required for the insertion of a reamer bolt.

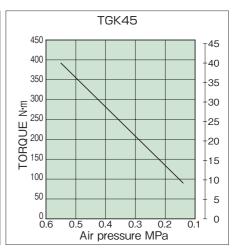
^{6.} The allowable displacement in the shaft direction is the value when the angular error is zero.

Note) The air supply port is a pipe joint applicable to both nylon and urethane tubes.

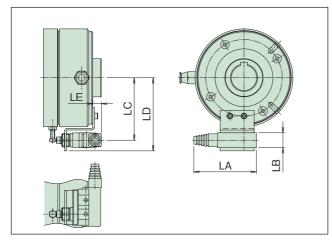
An example of the installation of a limit switch is shown on page 84.


Torque adjustment

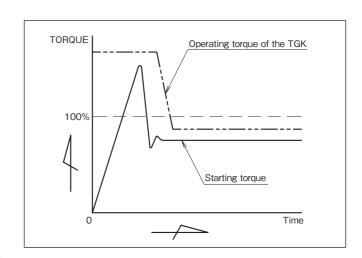

You can adjust the torque precisely by adjusting the air pressure corresponding to the required torque. To adjust the air pressure, use a regulator (pressure controller), refer to the torque correlation charts, and feed air into the cylinder of the TGK series. You can even change the operating torque during operation by changing the air pressure. Operating air pressure: 0.14 to 0.55 MPa


(Note) Be careful to keep the air supply source pressure higher than the preset pressure.

Size	Minimum torque N · m	Maximum torque N · m
TGK20	15.0	65.0
TGK30	30.0	147
TGK45	90.0	392


Torque Correlation Chart

Limit Switch Installation Example (Standard option)

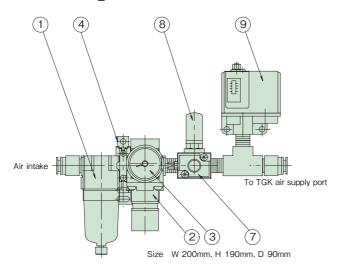

Upon request, the product is delivered with a limit switch installed.

Size	LA	LB	LC	LD	LE	Model of limit switch (Omron)
TGK20	73.5	17.5	59	71.5	16.2	
TGK30	73.5	17.5	73.5	86	10.2	SHL-Q55
TGK45	73.5	17.5	95.5	108.5	_	

Air control system

The operating torque of existing protection devices cannot be changed during operation.

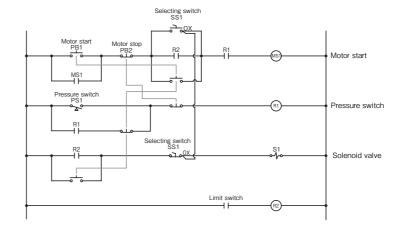
However, it is possible to change the operating torque of the TGK series during operation by changing the air pressure. Therefore, you can protect the machine by setting the torque higher than the starting torque only at startup, and then change the torque to the optimal value at a later time (refer to the figure on the right).



Single air control system

This system is for simple torque adjustment.

You can adjust the torque within an air pressure range of 0.14 to 0.55 MPa.


Air device configuration

Part number	Device name	Referential model number (SMC)
1	Air filter	AF20-02
2	Regulator	AR20-02
3	Pressure gauge	G36-02
4	Spacer with bracket	Y200T
5	_	_
6	_	_
7	3-port solenoid valve	VT307-1G-02
8	Silencer	AN20-02
9	Pressure switch	IS3000-02

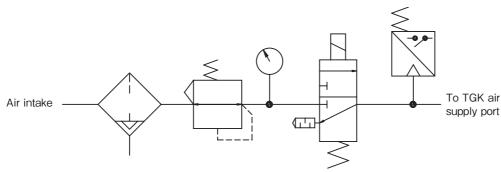
Electrical diagram

PB1	Motor start button
PB2	Motor stop button
SS1	Selecting switch
SS2	Pressure switch
S 1	Solenoid valve

Basic operation

Selecting switch (SS1) is set to "AIR ON."

Press the motor start button (PB1). The motor starts and the TGK series returns to the "CLUTCH ON" state. The limit switch is turned on, the self-holding of the motor is completed, and the motor continues to rotate even if you release the motor start button (PB1)

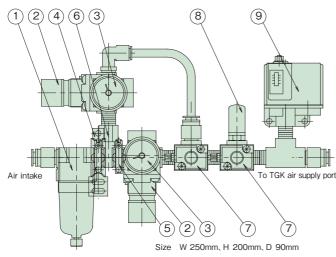

Note) If the pressure switch is off, the motor does not rotate even if you press the motor start button (PB1).

The sensor target of the TGK series moves simultaneously when an overload occurs, and the amount of movement is detected by a limit switch or a similar device.

If the limit switch is turned off, the solenoid valve (S1) switches to turn off the self-holding of the motor, and then the motor stops.

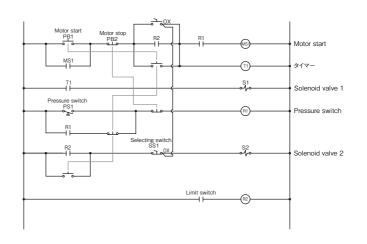
In the "CLUTCH OFF" state, you can do this by turning the selecting switch (SS1) to "AIR OFF." When turned to "AIR OFF," the solenoid valve switches, the air supply to the TGK series stops, the TGK series turns to "CLUTCH OFF," and the motor continues to rotate, but the driving force is not transferred to the driven side.

Electrical diagram



Dual air control system

This system uses two regulators. At the time of startup, the regulator set to the higher pressure feeds air to the TGK series. A timer is used to count several seconds (1 to 10 seconds), and then the regulator set to the lower pressure is switched in order to reset the torque to the optimal value. Such a system enables various types of automatic torque adjustments during operation.


Air device configuration

Part number	Device name	Referential model number (SMC)
1	Air filter	AF20-02
2	Regulator	AR20-02
3	Pressure gauge	G36-02
4	Spacer with bracket	Y200T
5	Spacer	Y200
6	T type spacer	Y210-02
7	3-port solenoid valve	VT307-1G-02
8	Silencer	AN20-02
9	Pressure switch	IS3000-02

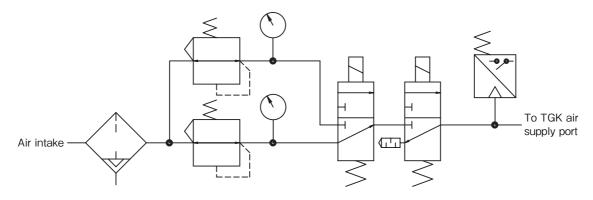
Electrical diagram

PB 1	Motor start button
PB2	Motor stop button
SS 1	Selecting switch
SS2	Pressure switch
S 1	Solenoid valve 1
S2	Solenoid valve 2

Basic operation

Selecting switch (SS1) is set to "AIR ON."

Press the motor start button (PB1). The motor starts and the TGK series returns to the "CLUTCH ON" state. The limit switch is turned on, the self-holding of the motor is completed, and the motor continues to rotate even if you release the motor start button (PB1)


Note) If the pressure switch is off, the motor does not rotate even if you press the motor start button (PB1).

The sensor target of the TGK series moves simultaneously when an overload occurs, and the amount of movement is detected by a limit switch or a similar device.

If the limit switch is turned off, the solenoid valve (S1) switches to turn off the self-holding of the motor, and then the motor stops.

In the "CLUTCH OFF" state, you can do this by turning the selecting switch (SS1) to "AIR OFF." When turned to "AIR OFF," the solenoid valve switches, the air supply to the TGK series stops, the TGK series turns to "CLUTCH OFF," and the motor continues to rotate, but the driving force is not transferred to the driven side.

Electrical diagram

Torque Limiter

Features

Traditional friction type
Economically priced and easy to use

Easy torque adjustment

Slip torque setting and adjusting can be done by simply tightening the adjusting nut or bolts. The friction of the friction facings and the center member transmits torque, so overload is guaranteed to cause the Torque Limiter to slip, thus protecting the machine.

Automatic reset

If overload occurs the Torque Limiter will slip. If overload is removed it will automatically reset and begin to rotate. Because there are no parts to replace like a shear pin, the Torque Limiter requires little labor to keep it operating.

Can be fixed to each type of drive

Sprockets and gears can be fixed to the center member.

A wide variety of Torque Limiters are available

From small capacity to large, all standard models can be used in all transmission conditions.

Finished bores for quick delivery

Finished bore products can be made for quick delivery. (Refer to pages 91, 93)

Series

Torque Limiter

Once attached to the shaft, torque transmission is conveyed through roller chains, belts and gears.

Torque Limiter with sprocket

The torque of finished bore Torque Limiters with machined sprockets is factory pre-set.

Torque Limiter coupling

A combined Torque Limiter and roller chain coupling.

Torque Limiter with sprocket

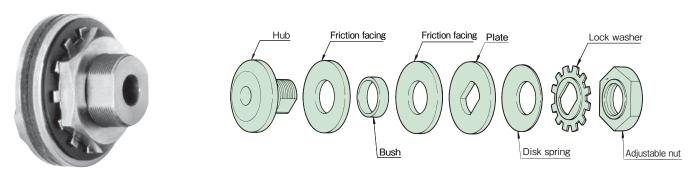
TL500

TL200 to TL700

Torque Limiter (rough bore)

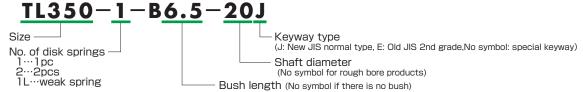
TL10

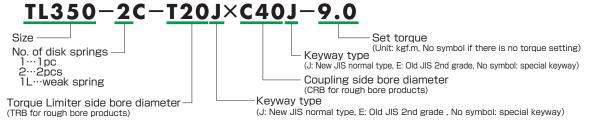
TL200 to TL20


Torque Limiter coupling (rough bore)

TL500-C

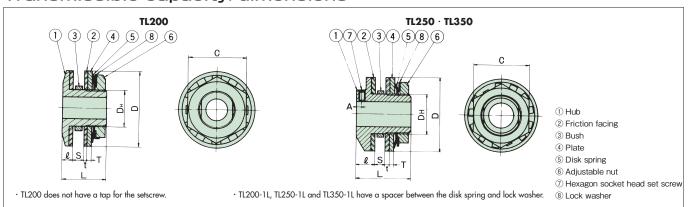
TL200-C to TL20-C


Construction and operating principles

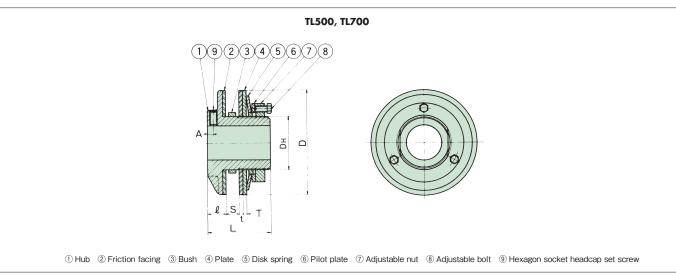

- During normal operation, the disk spring inserted between the center member (sprockets and gear) and friction facings applies pressure to the center member. Below the set torque, the frictional force transmits rotation.
- If the operational torque exceeds the set torque due to overload, the center member will slip between the friction facings. When overload is stopped, it automatically resets.

Model No.

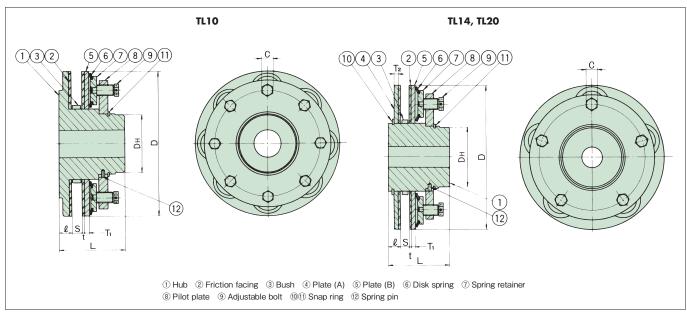
2. Torque Limiter coupling


Rough Bore Product (Rough Bores on Both Sides) Model No.

When using the Torque Limiter


Before installing a Torque Limiter rough bore product to the shaft, it is necessary to finish the bore, keyway and center member as well as torque setting.

- · Refer to page 96 for more information on Torque Limiter selection and center member selection/machining.
- Before assembling the Torque Limiter, remove any oil, rust or dust from the hub, friction facings, plate or center member (sprockets and gear).
- · Refer to page 94 for more information on setting torque.
- · When the direction of rotation is reversed, it will cause backlash. Use the Shock Guard TGX series for machines for which backlash is not allowed.
- If the friction coefficient decreases, the slip torque also decreases. Therefore, be careful to keep the friction facings free of water and oil. However, tightening the adjustable nut too firmly may apply excessive load to the friction facings via the disk spring and break the facings.
- Slipping at a high speed may cause the friction facings to become extremely hot, which will lead to surface carbonization and deterioration of strength. Therefore, do not use the product at speeds higher than the maximum rotation speed.


																				Uni	t : mm
		Set torque range	mq1.xpm	Rough		Мах.	Bush	Bush outer	Center member						D	imensic	ns				Mass
	Model No.	N⋅m	(r/min)	bore diameter	bore diameter	bore diameter	length	diameter	bore diameter	D	D _H	L	l	T	t	S max.	Α	С	Adjustable nut diameter X pitch	Set screw	kg
Ī	TL200-IL	1.0 to 2.0					3.8														
Ī	TL200-1	2.9 to 9.8		7	10	14	6.0	30	30+0.03	50	24	29	6.5	2.6	2.5	7	_	38	M24×1.0	—	0.2
	TL200-2	6.9 to 20					0.0														
	TL250-IL	2.9 to 6.9					4.5														
Ī	TL250-1	6.9 to 27	1,800	10	12	22	6.5	41	41 + 0.05	65	35	48	16	4.5	3.2	9	4	50	M35×1.5	M5	0.6
Ī	TL250-2	14 to 54					0.5														
Ī	TL350-IL	9.8 to 20]				4.5														
Ī	TL350-1	20 to 74	1	17	18	25	6.5	49	49 0.05	89	42	62	19	4.5	3.2	16	6	63	M42×1.5	M6	1.2
Ī	TL350-2	34 to 149	1				9.5														

- Note: 1. The products in bold are stock items. The rest are MTO.
 - 2. The hexagon socket head set screw is included.
 - 3. On TL200, setting to the shaft by hexagon socket head set screw is not possible. Use a snap ring for the shaft or end plate.
 - 4. The torque values above are values for continuous slip torque, intended for protecting the equipment from overload.
 - 5. For the selection of bush length, refer to the Selection page.
 - 6. The mass is that of one with the maximum bore diameter.

																			Uni	it : mm	
	Set torque range	Max.rpm	Rough	Min.	Мах.	Bush	Bush	Center member							Dii	mens	ions			Mass	
Model No.	N·m	(r/min)	bore	bore diameter	bore diameter	longth	outer diameter	hore diameter	D	D _H	L	l	T	t	S Max	Α	Adjustable nut diameter X pitch	Adjustable bolt diameter X pitch	Set screw	l la	
TL500-1L	20 to 49																				
TL500-1	47 to 210		20	22	42	6.5 9.5	74	74+ 0.05	127	65	76	22	6	3.2	16	7	M65×1.5	M8×1	M 8	3.5	
TL500-2	88 to 420	1 000				9.5															
TL700-1L	49 to 118	1,800				9.5															
TL700-1	116 to 569		30	32	64	12.5	105	105+ 0.05	178	95	98	24	8	3.2	29	8	M95×1.5	M10×1.25	M10	8.4	
TL700-2	223 to 1080					12.5															

- Note: 1. The products in bold are stock items. The rest are MTO.
 - 2. The hexagon socket head set screw is included.
 - 3. The torque values above are values for continuous slip torque, intended for protecting the equipment from overload.
 - 4. For the selection of bush length, refer to the Selection page.
 - 5. The mass is that of one with the maximum bore diameter.

Unit : mm

																		0	mir : mm
	Set torque range	Max.rpm	Rough	Min.	Max.	Bush	Bush outer	Center member					[Dime	nsions	,			Mass
Model No.	N·m	(r/min)	bore	bore diameter	bore diameter	lenath	diameter	bore diameter	D	D _H	L	l	Tı	T_2	t	S max.	С	Adjustable bolt diameter X pitch	kg
TL10 - 16	392 to 1274	1.000	30	32	72	12.5 15.5	135	135+0.07	254	54 100	115	23	8.5	-	4.0	24	19	M18×1.5	21
TL10 - 24	588 to 1862	1,000	30	32	/ 2	19.5			234	100		20	0.5		4.0	24	17	7410 × 1.5	<u> </u>
TL14 - 10	882 to 2666		40	42	100	15.5 19.5	183	183+0.07	356	145	150	31	13	13	4.0	29	27	M26×1.5	52
TL14 - 15	1960 to 3920	500	40	42	100	23.5	103		336	143	150	31	13	13	4.0	29	2/		32
TL20 - 6	2450 to 4900	300	50	52	120	15.5 19.5	224	226 ^{+ 0.07}	508	105	175	24	1.5	10	4.0	31	36	M32×1.5	117
TL20 - 12	4606 to 9310		50	52	130	23.5		226 0	508	008 185	175	36	15	18					117

Note: 1. All products are MTO.

- 2. If the model larger than TL20-12 is required, contact TEM.
- 3. The torque values above are values for continuous slip torque, intended for protecting the equipment from overload.
- 4. For the selection of bush length, refer to the Selection page.
- 5. The mass is that of one with the maximum bore diameter.

TL200-350

Without bush							
Product code	Model No.						
\$110701	TL200-1L						
\$110001	TL200-1						
\$110011	TL200-2						
\$110702	TL250-1L						
S110002	TL250-1						
\$110012	TL250-2						
\$110703	TL350-1L						
S110003	TL350-1						
\$110013	TL350-2						

With bus	sh
Product code	Model No.

Froduct code	Model 140.
S110711	TL200-1L-B3.8
S110721	TL200-1L-B6.0
\$110101	TL200-1-B3.8
S110102	TL200-1-B6.0
\$110103	TL200-2-B3.8
\$110104	TL200-2-B6.0
S110712	TL250-1L-B4.5
S110722	TL250-1L-B6.5
\$110105	TL250-1-B4.5
S110106	TL250-1-B6.5
\$110107	TL250-2-B4.5
S110108	TL250-2-B6.5
\$110713	TL350-1L-B4.5
\$110723	TL350-1L-B6.5
S110724	TL350-1L-B9.5
\$110109	TL350-1-B4.5
\$110110	TL350-1-B6.5
S110111	TL350-1-B9.5
\$110112	TL350-2-B4.5
\$110113	TL350-2-B6.5
S110114	TL350-2-B9.5

TL500-700

Without I	oush
Product code	Model No.
S110704	TL500-1L
S110004	TL500-1
S110014	TL500-2
S110705	TL700-1L
S110005	TL700-1
S110015	TL700-2

With bush
Product code | Model No.

S110714	TL500-1L-B6.5
S110725	TL500-1L-B9.5
S110115	TL500-1-B6.5
\$110116	TL500-1-B9.5
S110117	TL500-2-B6.5
S110118	TL500-2-B9.5
S110715	TL700-1L-B9.5
S110726	TL700-1L-B12.5
S110119	TL700-1-B9.5
S110120	TL700-1-B12.5
S110121	TL700-2-B9.5
S110122	TL700-2-B12.5

TL10-20

Without bush								
Product code	Model No.							
S110006	TL10-16							
S110016	TL10-24							
S110017	TL14-10							
S110018	TL14-15							
S110019	TL20-6							
S110020	TL20-12							

With bush

Product code	Model No.
S110123	TL10-16-B12.5
\$110124	TL10-16-B15.5
S110125	TL10-16-B19.5
\$110126	TL10-24-B12.5
S110127	TL10-24-B15.5
S110128	TL10-24-B19.5
\$110129	TL14-10-B15.5
S110130	TL14-10-B19.5
S110131	TL14-10-B23.5
\$110132	TL14-15-B15.5
S110133	TL14-15-B19.5
S110134	TL14-15-B23.5
S110135	TL20-6-B15.5
S110136	TL20-6-B19.5
S110137	TL20-6-B23.5
S110138	TL20-12-B15.5
S110139	TL20-12-B19.5
S110140	TL20-12-B23.5

Finished bore Torque Limiter with sprockets

■ Finished bore Torque Limiter and finished sprockets are available for quick delivery. If sold as a combination, torque is pre-set before shipment.

With sprocket

Sprocket comes standard with TL200 to TL700.

Bores and keyways are already finished

Bore finishing is standard for Torque Limiter TL200 to 700.

Easy torque setting

Because the adjustable nut or adjustable bolt is set at the predetermined 120°, it is easy for the customer to set torque.

The torque setting is determined using a static torque tester.

Sprocket and bore finishing dimension table

Torque	Finished bore			Sprockets								
Limiter Model No.	diamet	er(mm)	Туре	Type F(mm) Bush length (mm) No. of teeth No. of teeth								
TL200	11,12,14,	10	RS35	4.3 - 0.25	3.8	20,21,22,23,24,25,26,27,28,30	_	0.3				
11200	11,12,14,		RS40	7 - 0.35	6.0	16,17,18,19,20,21,22,23,24,25,26	-	0.33				
TL250	12,14,15,16,	17	RS40	7 - 0.35	6.5	22,23,24,25,26,27,28,30	21,32	0.85				
11230	18,19,20,22	17	RS50	7 - 0.25	6.5	18,19,20,21,22,23,24,25,26,27,28	17	0.92				
	18,19,20, 22,24,25	_	RS40	7 - 0.35	6.5	26,27,28,30,32,34,35,36,38	40,42,45	1.55				
TL350			RS50	7 - 0.25	6.5	22,23,24,25,26,27,28,30,32	21,34,35,36	1.68				
	, , ,		RS60	10 - 0.30	9.5	_	18,19,20,21,22,23,24,25,26,27,28,30	1.91				
	22,24,25,	29,33,36	RS50	7 - 0.25	6.5	30,32,34,35,36,38,40,42,45	48,50	4.3				
TL500	28,30, 32,35,38,		RS60	10 - 0.30	9.5	25,26,27,28,30,32,34,35,36,38	40	4.7				
	40,42		RS80	13 - 0.30	9.5	_	19,20,21,22,23,24,25,26,27,28,30	5.2				
	35,40,42,45,	32,33,36,	RS60	10 - 0.30	9.5	35,36,38,40,42,45,48,50,54	_	10.7				
TL700	50,55,60,	38,43,46,	RS80	13 - 0.30	12.5	26,27,28,30,32,34,35,36,38	-	11.2				
	63,64	48,52,56,57	RS100	16.5 - 0.30	12.5	_	21,22,23,24,25,26,27,28,30	12.2				
Delivery	*1	*1				*1	*2	_				

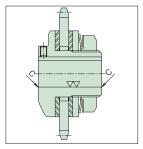
- *1 = Ex.-Japan 4weeks by sea *2 = Ex.-Japan 6weeks by sea
- 1. Delivery dates are listed in each column. If ordering the finished bore and with sprocket combination, the longer time of delivery applies.

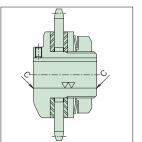
 2. If a finished bore is a size other than that listed in the chart above or hardened teeth are needed, it may be possible to provide this. Contact TEM for a consultation.

 3. The thickness of sprocket F is different from the thickness of the standard sprocket. Ex.-Japan 4weeks by sea

 4. For Torque Limiter dimensions, refer to pages 89 and 90.

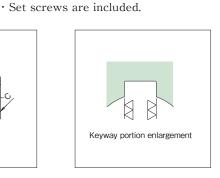
 5. The mass of the above is based on rough bore and minimum number of sprocket teeth.


 6. On TL200, setting to the shaft by hexagon socket head set screw is not possible. Use a snap ring for the shaft or end plate.


Model No.

Chamfer and finish

Bore diameter	Chamfer dimensions
ϕ 25 and less	C0.5
ϕ 50 and less	C1
φ 51 and above	C1.5



■ Torque setting

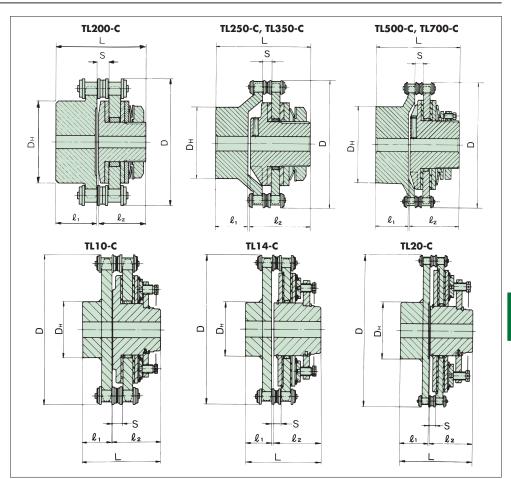
adjusting nuts or bolts.

· The bore tolerance is H7.

· Torque setting is done at 120° on the "Tightening Amount - Torque Correlation Graph". When using the

Torque Limiter, set the torque based on 120° with the

Bore diameter and keyway specifications


· The keyway is New JIS (JIS B 1301-1996) "normal type"

Torque Limiter coupling

The Torque Limiter coupling is a flexible coupling that uses a Torque Limiter and special type sprocket, and is connected by 2 rows of roller chains.

Centering the shaft coupling is easy and handling is simple. The Torque limiter acts as an automatic safety device, protecting machinery from damage due to overload.

· Torque Limiter unit of TL200-1LC, TL250-1LC and TL350-1LC have a spacer between the disk spring and lock washer.

Unit: mm

	Set torque range Max. rpm Rough bore				Min. bore	e diameter	Max. bor	e diameter				Dime	nsions			Mass
Model No.	N·m	(r/min) *	Coupling	Torque Limiter side	Coupling side	Torque Limiter side	Coupling side	Torque Limiter side	Sprocket	D	D _H	L	l 1	l 2	S	kg
TL200-1LC	1.0 to 2.0															
TL200-1C	2.9 to 9.8	1200	8	7	10	10	31	14	RS 40-16T	76	50	55	24	29	7.5	1.0
TL200-2C	6.9 to 20															
TL250-1LC	2.9 to 6.9															
TL250-1C	6.9 to 27	1000	13	10	15	12	38	22	RS 40-22T	102	56	76	25	48	7.4	1.9
TL250-2C	14 to 54															
TL350-1LC	9.8 to 20															
TL350-1C	20 to 74	800	13	17	15	18	45	25	RS 50-24T	137	72	103	37	62	9.7	4.2
TL350-2C	34 to 149															
TL500-1LC	20 to 49															
TL500-1C	47 to 210	500	18	20	20	22	65	42	RS 60-28T	188	105	120	40	76	11.6	10
TL500-2C	88 to 420															
TL700-1LC	49 to 118															
TL700-1C	116 to 569	400	23	30	25	32	90	64	RS 80-28T	251	150	168	66	98	15.3	26
TL700-2C	223 to 1088															
TL10-16C	392 to 1274	300	33	30	35	32	95	72	RS140-22T	355	137	189	71	115	26.2	66
TL10-24C	588 to 1860	300	33	30	33	32	95	/2	K3140-221	333	13/	189	/ 1	113	20.2	00
TL14-10C	882 to 2666	200	38	40	40	42	118	100	RS160-26T	470	167	235	80	150	30.1	140
TL14-15C	1960 to 3920	200	36	40	40	42	110	100	K3100-201	4/0	10/	233	80	130	30.1	140
TL20-6C	2450 to 4900	140	43	50	45	52	150	130	RS160-36T	631	237	300	120	175	30.1	285
TL20-12C	4606 to 9310	140	43	30	45	32	130	130	K3100-301	031	23/	300	120	1/3	30.1	203

^{1.} The products in bold are all stock items. The rest are MTO.

^{2.} Using a sprocket with induction-hardened teeth, TL200 to 700 can be used at up to 1800 r/min. The larger ones can be used at up to 800 r/min.

^{3.} If the model larger than TL20-12C is required, contact TEM.

^{4.} The mass is that of one with the maximum bore diameter.

Torque Limiter coupling with finished bore

Finished bore products are available for quick delivery.

■ Bores and keyways are already finished

Bore finishing is standard for Torque Limiter couplings TL200C to 700C.

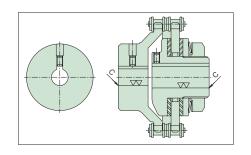
■ Finished Bore Dimension Chart

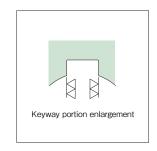
Unit: mm

T 1: 1: C 1: M 11N1	Finished bo	ore dimensions		
Torque Limiter Coupling Model No.	Torque Limiter side	Coupling side		
TL200-1LC				
TL200-1 C	10,11,12,14	10,11,12,14,15,16,17,18,19,20,22,24,25,28,29,3		
TL200-2C				
TL250-1LC				
TL250-1C	12,14,15,16,17,18,19,20,22	15,16,17,18,19,20,22,24,25,28,29,30,32,33,35, 36,38		
TL250-2C		30,30		
TL350-1LC				
TL350-1C	18,19,20,22,24,25	15,16,17,18,19,20,22,24,25,28,29,30,32,33,35, 36,38,40,42,43,45		
TL350-2C		30,30,40,42,43,43		
TL500-1LC				
TL500-1C	22,24,25,28,29,30,32,33,35,36,38,40,42	20,22,24,25,28,29,30,32,33,35,36,38,40,42,43, 45,46,48,50,52,55,56,57,60,63,64,65		
TL500-2C		45,40,40,50,52,55,50,57,00,05,04,05		
TL700-1LC				
TL700-1C	32,33,35,36,38,40,42,43,45,46,48,50,52,55,56, 57,60,63,64	, 25,28,29,30,32,33,35,36,38,40,42,43,45,44 50,52,55,56,57,60,63,64,65,70,71,75,80,8		
TL700-2C	37,307,03,04			
Delivery	ExJapan 4	1 weeks by sea		

^{1.}For finished bore and hardened teeth specifications outside those written in the above chart, please conact TEM for more information.

Model No.


TL250 - 2C - T18J X C30J - 5.0 Size No. of disk springs Torque Limiter side bore diameter Keyway type: (J: new JIS normal type) Coupling side bore diameter Keyway type: (J: new JIS normal type) Set torque (unit: kgf·m, no number is displayed when torque is not set)


■ Bore diameter and keyway specifications

- · Bore diameter tolerance is H7.
- The keyway is New JIS (JIS B 1301-1996) "Normal type"
- · Setscrews are included.

■ Chamfer and finish

Bore diameter	Chamfer dimensions
ϕ 25 and less	C0.5
ϕ 50 and less	C1
φ 51 and above	C1.5

Selection

If using the Torque Limiter with human transportation or lifting devices, take the necessary precautions with equipment to avoid serious injury or death from falling objects.

1 From the machine's strength and load, as well as other information, set the trip torque at the point where it should not go any higher. This torque is the Torque Limiter slip torque.

When the limit value is not clear, calculate the rated torque by using the rpm of the shaft where the Torque Limiter is installed and rated output power of the motor. Then, multiply by 1.5 to 2.0. This is the Torque Limiter slip torque.

Slip torque should be lower than rated torque.

Using the dimension table, verify that the maximum allowable bore diameter of the Torque Limiter is larger than the installation shaft diameter. If the installation shaft diameter is bigger, use a Torque Limiter one size larger.

Depending on the thickness of the center member which is clamped, use an appropriate length of bushing. Select a bush by referring to the bush length in the dimension table. Use a single bush or a combination of bushes, whichever is longest without exceeding the thickness of the center member.

Torque setting -

Torque Limiter slip torque is set by tightening the adjusting nuts or bolts.

After installing the Torque Limiter to the equipment, tighten the adjusting nuts or bolts gradually from a loose position to find the optimal position.

In addition, by using the "Tightening Amount - Torque Correlation Charts" below, the tightening amount of the adjusting nut and bolts for slip torque can be found. However, due to the condition of the friction surface and other factors, the torque for the fixed tightening amount changes.

Using the graph as a rough guide, try test operating the Torque Limiter with the tightening amount slightly loose, then tighten gradually to find the optimal position. This is the most practical method.

When slip torque stability is especially important, hand tighten the adjusting nut or bolts as much as possible, and then slip approximately 500 times for running-in at a wrench-tightened 60° more. If the rotation speed is fast, slip several times and subject it to 500 slips.

With the center member, the torque can be set to the specified amount. In this case, it is necessary to use a finished bore.

TL200, TL250, TL350 TL500, TL700 T10 TL14 TL20 **Tightening Amount** 10000 200 1200 1000 and Torque 120 **Correlation Chart** 1000 100 Zero (0) point is the condition 150 Ê 15 Ê at which the adjustable nut <u>¥</u>80 E 800 or adjustable bolts are ₹ F 素 600 **≥** 6000 tightened by hand, and the torque torque torque torque 4000 an 600 disk spring is fixed. <u>≘</u> 400 Slib Slib 200 Adjustable nut tightening rotation angle (deg. Adjustable bolt tightening rotation angle (deg.) Adjustable bolt tightening rotation angle (deg.) TL200 - IL, TL250 - IL, TL350 - IL TL500 - IL, TL700 - IL 140 14 -12 TL700-£ 1.5 {kgf·m} 100 Ŗ ₹ torque 1.0 torque torque 60 TL250-IL L500-1 Slip Slip 40 Adjustable nut tightening rotation angle (deg.) Adjustable bolt tightening rotation angle (deg.)

Center member selection and manufacture

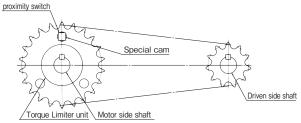
Sprockets and gears can be used as a center member with the Torque Limiter. If the customer intends to select or manufacture the center members by themselves, take the following precautionary steps:

For the Torque Limiter's outer diameter, the minimum diameter of the center member is restricted. When using a sprocket with a chain drive, refer to page 96 for minimum number of teeth.

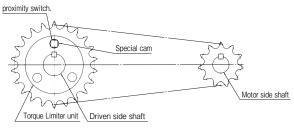
Prinish the friction face sides of the center member (both sides) in 3s - 6s.

3 For the bore diameter of the center member, machine it within the center member bore diameter tolerance from the dimension table in 3s - 6s.

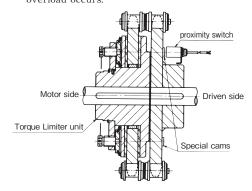
The width in which the center member is clamped should be within the S dimension in the dimension table.


Torque Limiter's operation detection

When overload occurs, the Torque Limiter slips and protects the machine, but if the driving source is not stopped, the Torque Limiter will continue to slip. If it continues to slip, the friction facing will be abnormally worn and become unusually hot, making it necessary to stop the drive source immediately.


The following are examples that detect Torque Limiter slips and stop the drive by using a proximity switch and digital tachometer.

Installation examples


Typel When the driven side experiences overload and the Torque Limiter's center member stops.

Type2 When the driven side experiences overload, the Torque Limiter unit stops.

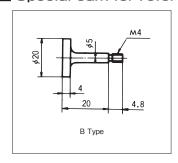
Type 3 When the Torque Limiter is used with a coupling type and the center member side stops when overload occurs.

Type 4 When the Torque Limiter is used with a coupling type, and the main unit side stops when overload occurs.

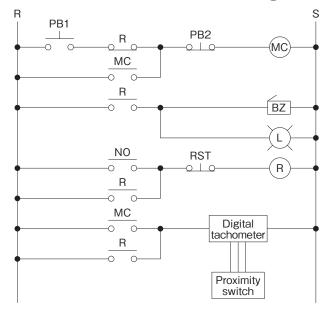
For the installation of Type 4, it is quite difficult to install the special cams, so as much as possible avoid using this type. When using the Torque Limiter with the coupling type, use Type 3.

Slip can be detected within approximately 1 to 10 seconds based on the rotational detection speed if the number of special cams selected is shown in the chart.

Number of special cams and rotational detection speed


Number of Special cams	Rotational detection speed range r/min	Number of Special cams	Rotational detection speed range r/min
1	6 to 60	6	1.0 to 10
2	3 to 30	7	0.85 to 8.5
3	2 to 20	8	0.75 to 7.5
4	1.5 to 15	9	0.67 to 6.7
5	1.2 to 12	10	0.6 to 6.0

Note: In the case of 0.6 r/min and slower, the range is that of 6 to 60 r/min divided by the number of special cams.


■ Special cam dimensions and installation

The special cam is fixed by a screw on the driven side. Use a screw lock to lock the screw.

■ Special cam for reference

■ Reference Electrical Schematic Diagram

PB1 : Motor start button

 $PB2 \; : Motor \; stop \; button$

RST: BZ, L reset button

MC : Electromagnetic contactor for motor

R : Auxiliary relay

NO : Digital tachometer output

a contact

BZ : Buzzer L : Lamp Proximity switch:

Digital tachometer:

OMRON TL-N5ME2

OMRON H7CX-R11-N

Note)

We recommend OMRON digital tachometers and proximity switches for the above. For more information, refer to the OMRON catalog.

■ Sprockets for the center member

When using the sprocket as a center member, refer to the notes below. In the below chart, the sprocket is used as a center member for the chain drive.

- (1) Minimum number of teeth in which the chain does not interfere with the special cam (same as the reference drawing of the previous page) when using installation types 1 and 2 of the previous page.
- (2) Minimum number of teeth in which the chain does not interfere with the friction facings of the Torque Limiter.
- (3)Bush length
- (4) Sprocket bore diameter (center member bore diameter)

Torque Limiter only and in the case the special cams shown in the previous page are used in type 2.

	Sprocket bore								Min. I	10. of :	sprocke	et teeth							
Torque Limiter	diameter	RS	35	R	S40	RS	50	RS	60	RS	80	RS1	100	RS	120	RS1	140	RS1	160
Model No.	(center member bore diameter)	/YIIII.I 10.	Bush length	Min.No. of teeth	Bush length														
TL200	30 + 0.03	△ 20	3.8	16	6														
TL250	41 + 0.05			20	6.5	17	6.5												
TL350	49 + 0.05			26	6.5	21	6.5	18	9.5	15	9.5								
TL500	74 ^{+ 0.05}					△ 29 (30)	6.5	25	9.5	19	9.5								
TL700	105 + 0.05							△ 33 (35)	9.5	26	12.5	21	12.5	18	12.5				
TL10	135 + 0.07											△ 29 (30)	12.5	24	15.5	△ 22	19.5		
TL14	183 + 0.07											△ 39 (40)	15.5	△ 33 (35)	15.5	△ 29	19.5	△ 26	23.5
TL20	226 + 0.07											△ 54	15.5	△ 46 (60)	15.5	△ 40	19.5	△ 35	23.5

 $Note: Those \ marked \ with \ " \triangle " \ are \ not \ standard \ A \ type \ sprockets. \ When \ using \ a \ standard \ stock \ sprocket, \ use \ the \ number \ of \ teeth \ in \ ().$

In the case the special cams shown in the previous page are used in type 1.

	Sprocket bore								Min. 1	No. of s	procke	et teeth							
Torque Limiter	diameter	RS	35		S40		50	RS			80		100		120	RS1			160
Model No.	(center member bore diameter)	Min.No. of teeth	Bush length																
TL200	30 + 0.03	△ 25	3.8	19	6.0														
TL250	41 ^{+ 0.05}			24	6.5	20	6.5												
TL350	49 ^{+ 0.05}			30	6.5	24	6.5	21	9.5	17	9.5								
TL500	74 ^{+ 0.05}					32	6.5	△ 28 (30)	9.5	21	9.5								
TL700	105 + 0.05							36	9.5	△ 28 (30)	9.5	△ 23 (24)	12.5	20	12.5				
TL10	135 + 0.07											△ 31 (32)	12.5	26	15.5	△ 23	19.5		
TL14	183 + 0.07											△ 41 (45)	15.5	35	15.5	△ 30	19.5	△ 27	23.5
TL20	226 + 0.07											△ 56 (60)	15.5	△ 47 (60)	15.5	△ 41	19.5	△ 36	23.5

Note: Those marked with " \triangle " are not standard A type sprockets. When using a standard stock sprocket, use the number of teeth in ().

Axial Guard

Features

The Axial Guard is a new type of mechanical type overload protection device for mechanisms where the load acts linearly, such as pushers or cranks.

Highly accurate trip load

Even with repeated loads, the fluctuating trip load variation is always within ±15%.

Non-backlash

High rigidity means no backlash for overweight axial loads.

Easy load adjustment

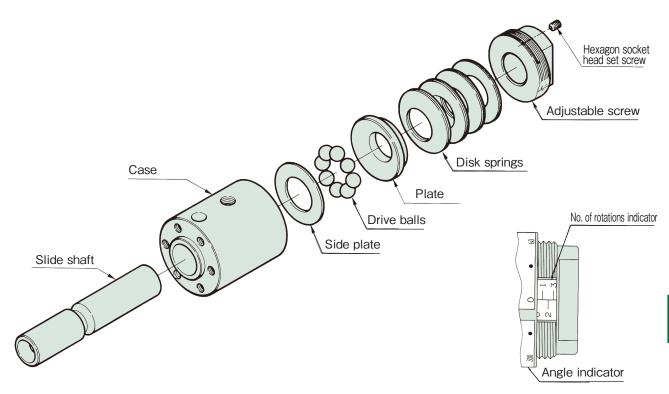
By simply turning the adjustable screw, load can be adjusted. In the tensile or compression direction, the Axial Guard trips at almost the same load.

Release type

When overload occurs, the Axial Guard immediately trips and the connection between the drive side and load side is shut off. The drive side's thrust does not transmit.

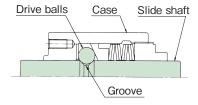
The resetting requires a small load, making it easy to reset.

Easy installation

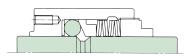

The end faces of the case and slide shaft have tap holes for easy built-in design.

Standard stock

All Axial Guards are in stock.



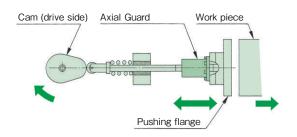
Construction

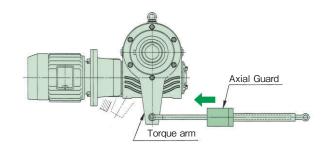

Operating principles

During normal operation (engagement)

Because the drive ball is held in the groove, thrust from the case (or slide shaft) is transmitted to the load side.

During overload (tripped)


When the load exceeds the pre-set value, the drive ball pops out of the groove; the connection between the slide shaft and the case disengages, and moves in a free state.

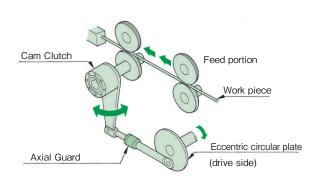


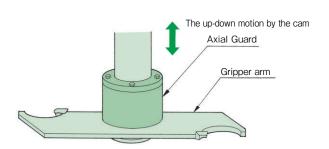
Applications

Pusher

Tie-rod of the shaft-mounted reducer

The cam pushes the work piece.

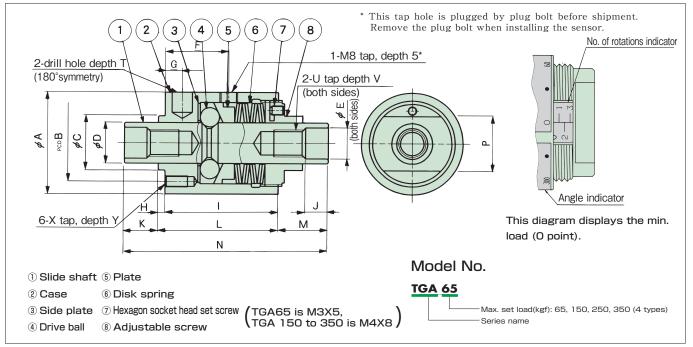

When overload occurs due to the over-weighted work piece or jamming, the Axial Guard trips and protects the machine.


It is installed at the torque arm rotation-prevention portion of the shaft-mounted reducer.

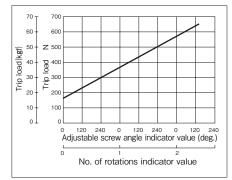
When overload occurs and the moment is higher than the preset value, the Axial Guard trips.

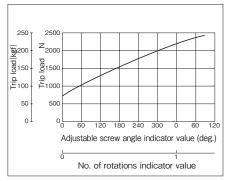
Crank mechanism

The machining center's gripper

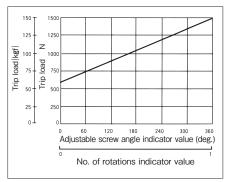


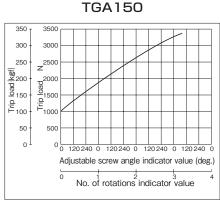
The combination of the crank and Cam Clutch motion sends the wire rod. When a foreign object gets caught up in the machine or the wire rod is deformed, overload occurs and the Axial Guard trips, thus protecting the feed portion.


When a tool is being changed, the gripper portion is driven in the axial direction by the cam mechanism. When a tool gets caught up or the gripper hits the obstacle, the Axial Guard trips, thus protecting the cam and gripper from damage.



																						Unit	: mm
Model No.	Trip load set range N	А	В	C h7	D	E H7	F	G	Н	ı	J	K	L	М	Z	Р	S	Т	U	>	Х	Υ	Mass kg
TGA65	147 to 637	33	23	14	10	7	22.5	5	2	40	5	5	42	11	58	16	5	7.5	M 6	7	МЗ	6	0.2
TGA150	588 to 1470	38	28	18	14	10	24	6	2	43	7	8	45	19	72	21	7	8	M 8	10	M4	8	0.4
TGA250	735 to 2450	45	34	24	18	14	28	7.5	3	50	10	15	53	22	90	24	8	9	M12	14	M5	10	0.7
TGA350	980 to 3430	56	44	28	22	16	34	9	3	63	10	20	66	24	110	30	10	12	M14	15	M6	10	1.2

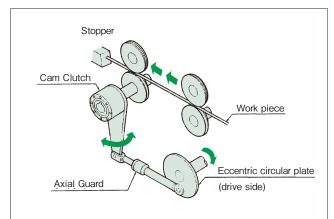

Load Curve (Tightening Amount-Load Correlation Diagram)



TGA65

TGA250

TGA350

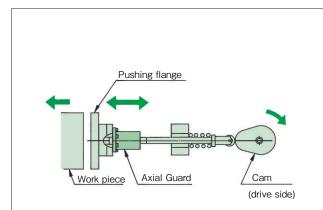


Guide to calculating load

In order for the Axial Guard to be most effective as a safety protection device, install it on the driven side in the area where overload is most likely to occur.

Determining trip load

From the machine's strength and load, as well as other information, set the trip load at the point where it should not go any higher. When the limit value is not clear, it is decided by the load calculation (refer to the example below). As the low load on the equipment gradually increases, determine the appropriate set load.



This is an example of the combination of the crank and Cam Clutch motion sending the wire rod intermittently.

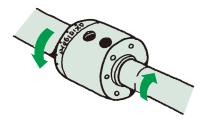
The following is a checklist of items for calculating load:

- The generated load due to the acceleration velocity of the drive side's crank motion.
- The impact load when hitting the work piece
- The load when machining the work piece
- Friction between each part

In addition, after checking the strength of each part, carry out a working load estimation for the Axial Guard.

This is an example of pusher actuation by the cam mechanism.

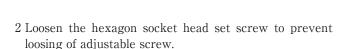
- The generated load is due to drive side cam acceleration velocity
- The impact load when hitting the work piece
- The generated load when pushing the work piece
- The friction when pushing the work piece


In addition, after checking if the work piece has been deformed and verifying the strength of each part, carry out a working load estimation for the Axial Guard.

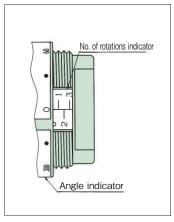
Caution

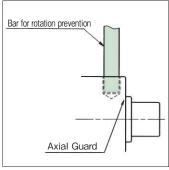
1 For most situations, avoid using the Axial Guard with human transportation or lifting devices. If you decide to use an Axial Guard with these devices, take the necessary precautions on the equipment side to avoid serious injury or death from falling objects.

2 For the Axial Guard, the case and slide shaft can rotate independently based on each shaft center. In the case that the prevention of independent rotation during operation is required, refer to page 73.



3 When resetting, the slide shaft or case rapidly/suddenly moves in the shaft direction, causing mechanical shock. Therefore, do not reset the Axial Guard by hand or touch it directly.




How to set the trip load

1 All Axial Guards are shipped with the load set at the minimum point (min. load). Confirm that the number of rotations indicator and angle indicator are set at "0". (Refer to the diagram on the right)

- 3 From the information in the "Tightening Amount Load Correlation Diagram" on page 100, find the tightening angle of an equivalent adjustable screw for the predetermined trip load. Tighten to 60° less than the predetermined angle.
- 4 Next, carry out a load trip test. Gradually tighten to optimal trip load and set.
- 5 When the load has been set, tighten the hexagon socket head set screw to prevent loosing of adjustable screw portion, and verify that the adjustable screw is locked. (Refer to the diagram on the right)

When turning the adjustable screw, to prevent the Axial Guard from turning together with the adjustable screw, insert the bar into the drilled hole at the outer diameter of the cover.

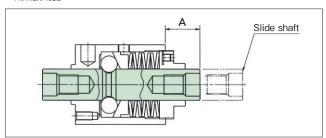
how many times the adjustable screw has rotated from the minimum load. If the end face of case is between 0 and 1, it indicates less than 1 rotation (less than 360°). As well, the angle indicator indicates how many degrees the adjustable screw has turned. The degree amount is indicated by the center line of the No. of rotations indicator. The total of the adjustable screw's number of rotations (1 rotation=360°) and angle indicator is the rotation angle of the adjustable screw (Example) If the No. of rotations indicator is between 0 and 1, and the angle indicator shows 180°, the adjustable

screw is turned to 180° position from

minimum torque.

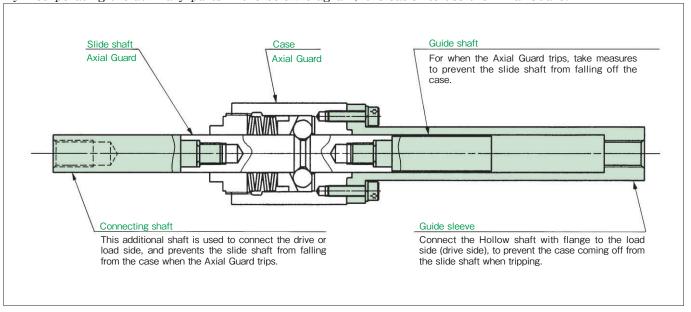
The No. of rotations indicator displays

Reset


- 1 Before resetting, stop the machine and remove the cause of overload.
- 2 It is reset automatically when restarting the drive side (motor) to reverse load direction of trip direction. Turn the input (motor) using low rpm or inching. The axial load that is necessary for resetting is listed in the chart on the right.
- 3 When the Axial Guard resets, it makes a distinct "click" sound. To check whether the Axial Guard has reset, refer to dimension A in the diagram on the right.

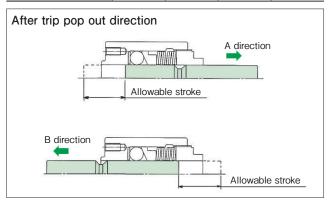
_	
C^{21}	ıtion

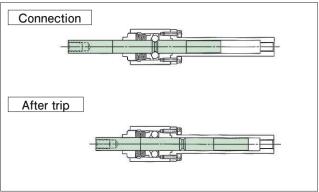
When resetting, the slide shaft or cover rapidly moves in the axial direction, causing mechanical shock. Therefore, do not reset by hand or directly touch the Axial Guard.


Model No.	* Axial direction load for reset	Dimension A when resetting
TGA 65	83 N{8.5 kgf}	11
TGA150	196 N{20 kgf}	19
TGA250	343 N{35 kgf}	22
TGA350	490 N{50 kgf}	24

* At Max. load

Auxiliary parts

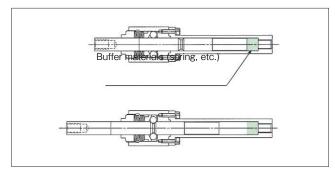

By incorporating the auxiliary parts in the below diagram, it is easier to use the Axial Guard.



Axial Guard allowable stroke (Axial Guard unit only)

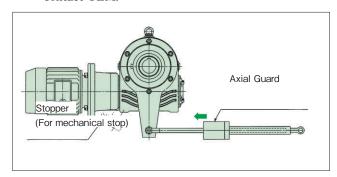
If the Axial Guard exceeds the stroke limits from the table below, the slide shaft will come out. In this case, the ball will fall out and the Axial Guard's functions will be lost. If after tripping the stroke is more than what is listed in the below table, connect the connecting and guide shafts.

Model No.	TGA65	TGA150	TGA250	TGA350
A direction allowable stroke	14	20	30	38
B direction allowable stroke	14	22	24	26



1. The mechanical stop limits stroke after trip

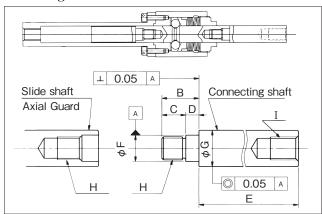
In the case of stopping the stroke at a certain position by sensor detection when tripping, it will become necessary to use a backup mechanism for stopping.


Install a spring or other such buffer material to absorb the stroke.

2. When installing at shaft-mounted reducer tie rod

This is an example of the application being used for shaft-mounted reducer torque arm as an overload protection device. Load direction is rotational direction, and the reducer rotates when tripping. Because of the reducer rotation, after the sensor detects overload and stops the motor, it stops mechanically at a certain position.

* For possible applications and model numbers, contact TEM.

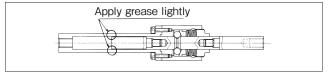


Recommended manufacturing dimensions for auxiliary devices

When installing a connecting shaft, guide shaft, guide sleeve or bolt to an Axial Guard, apply an adhesive for metal to the threaded portion to prevent loosening. (Loctite, etc.) (TEM recommends Loctite 262.)

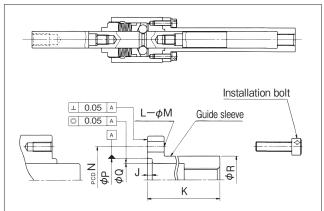
1. Guide shaft, connecting shaft

Use the tap hole at the end face of the slide shaft to connect the guide and connecting shafts. The recommended dimensions of the connecting portion are in the diagram below.


,	Model No.	B (O - 0.2)	C (0 - 0.2)	D	E	F (h7)	G (h9)	H screw size	l * screw size
	TGA65	10	6	4		7	10	M6×P1.0	M6×P1.0
	TGA150	15	9	6	Select by installation	10	14	M8×P1.25	M8×P1.25
	TGA250	22	13	9	length,	14	18	M12×P1.75	M12×P1.75
	TGA350	23	14	9	siroke, etc.	16	22	M14×P2.0	M14×P2.0

^{*} Not necessary for guide shaft

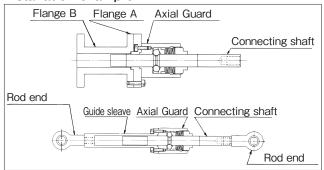
Installation


1. Installing to the machine

- (1) Before installing the Axial Guard to the machine, completely wipe off any dust or dirt from the slide shaft, the spigot facing of the case and taps.
- (2) Next, connect the slide shaft and the case tap portion. TEM recommends an adhesive for metals be applied to the tap portion or the bolt outer diameter to prevent any loosening. (Loctite 262 recommended)
- (3) Make sure not to fix both the Axial Guard slide shaft side and the case side when installing the Axial Guard. The Axial Guard has no coupling function, so if it is installed too rigidly it will not properly function, potentially causing a malfunction or machine damage.
- (4) When the guide sleeve and guide shaft are connected to the Axial Guard there is a possibility that the inner diameter of the guide sleeve and the outer diameter of the guide shaft end face may interfere. Just in case, apply grease to the portion on the diagram below. (Refer to the maintenance section on page 106 for information about grease brands.)

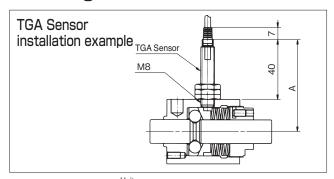
2. Guide sleeve

Use the tap holes at the end face of the case to connect the case and guide sleeve. The recommended dimensions of the connecting portion are in the diagram below.

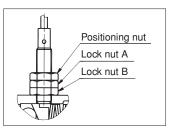

Model No.	J (+ 0.2)	K	L	М	N	P (H7)	(+ 0.2)	C (0 - 0.2)
TGA65	2.5		6	3.4	23	14	10.5	16
TGA150	2.5	Select by installation	6	4.5	28	18	14.5	20
TGA250	3.5	length, stroke, etc.	6	5.5	34	24	18.5	24.5
TGA350	3.5	siloke, elc.	6	6.6	44	28	22.5	31

- * When the Axial Guard is installed vertically, (lengthwise direction) grease may leak through the gap between the slide shaft and case or the adjustable screw. To avoid any problems, make sure to replenish grease at frequent intervals. (Refer to page 106 for maintenance information)
- * Do not use the Axial Guard if there is a possibility that a falling accident of the drive or load side may occur when tripping. Such an accident may lead to serious injury or machine damage.

2. Overload detection


When using the Axial Guard, make sure to combine it with the sensor mechanism to ensure that overload can be properly detected. (Refer to page 105 for overload detection information)

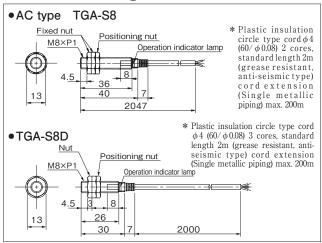
Installation example


Overload detection

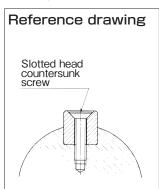
When using the Axial Guard make sure to use the TGA Sensor to detect trip during overload.

		Unit : mm
Model No.	Α	Thread depth
TGA65	52	
TGA150	54.5	4.5
TGA250	58	4.5
TGA350	63.5	

^{*} This tap hole is plugged by plug bolt before shipment. Remove the plug when installing the sensor.



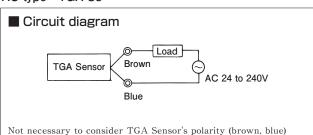
Fix the TGA Sensor to the case by screwing it into the tap holes. After fixing the sensor to the case, screw on lock nut A last to make it lock in place (double nut). (The positioning nut is glued with an adhesive, so do not forcibly rotate it.)


■ TGA Sensor Specifications

		AC type	DC type	
Model No.		TGA - S8	TGA - S8D	
Power	Rating	AC24 to 240V	DC12 to 24V	
voltage	Possible use range	AC20 to 264V(50/60Hz)	DC10 to 30V	
Current consumption		Less than 1.7mA(at AC200V)	Less than 13mA	
Control output (open, close capacity)		5 to 100mA	Max. 200mA	
Ind	dicator lamp	Operation indicator		
Ambient operating temperature		 5 to + 70°C (no condensation) 		
Ambient operating humidity		35 to 95% RH		
C	Output form	NC (Output open/close condition when not detecting sensor plate)		
Op	peration form	_	— NPN	
Insul	ation resistance	More than $50M\Omega$ (at DC500V mega) Charge portion - Case		
	Mass	Approx. 45g (with 2m cord)		
Res	idual voltage	Refer to characteristic data	Less than 2.0V (Load current 200mA, 2m cord length)	

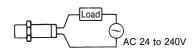
Measurement Diagram

When using the TGA Sensor it is necessary to stop the slide shaft side and case side rotation. As in the diagram below, stop rotation by putting the slide key (JIS1303 - 1916) between the guide sleeve and the guide shaft. For other methods, contact TEM for more information.

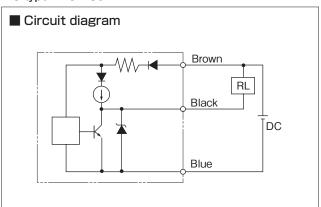

Like the diagram on the left, fix the slide key to the shaft with a slotted head countersunk screw (JISB1101). Screw sizes are listed below.

Model No.	Screw size
TGA65	M2
TGA150	M2
TGA250	M2
TGA350	M3

■ TGA Sensor handling


Refrain from striking, swinging or putting excessive force on the detecting portion.

AC type TGA-S8


Precautions for wiring

Make sure to connect the load at first, then turn on the power. If the
power is turned on without connecting the load, it will be damaged.

 In order to prevent malfunction or damage due to surge or noise, insert the TGA sensor code in a individual piping when it runs close to the power cable.

DC type TGA-S8D

■ About choosing load and wiring

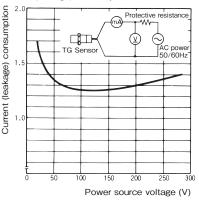
Connecting to the power source

Make sure to connect to the power source through load. A direct connection will break the elements inside.

Metal piping

In order to prevent malfunction or damage, insert the proximity switch code inside a metal pipe when it runs close to the power cable.

Surge protection


In the case where the TGA Sensor is near a device that generates a large surge (motor, welding machine, etc.), the TG Sensor contains a surge absorption circuit, but also insert a varistor to the source.

• The effect of current consumption (leakage)

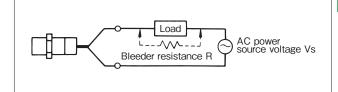
Even when the TGA Sensor is OFF a small amount of current continues to flow to keep the circuit running. (Refer to the "Current Consumption (leakage) Graph".) Because of this, a small voltage occurs in the load that can sometimes lead to reset malfunction. Therefore,

confirm that the voltage of the load is less than the reset voltage before use. As well, if using the relay as load, depending on the construction of the relay, a resonance may occur due to the current leaks when the sensor is OFF.

Current (leakage) Consumption Characteristics

When power voltage is low

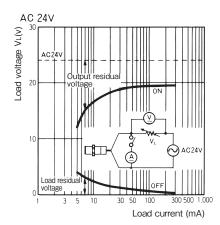
When power source voltage is lower than AC48V and load current is less than 10mA, the output residual voltage when the TGA Sensor is ON becomes large. When it is OFF, the residual voltage of load becomes large. (Refer to "Residual Voltage Characteristics of Load".) Take caution when using the load such as a relay operated by voltage.

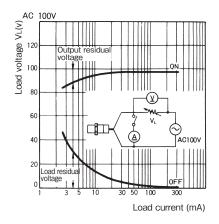

When load current is small

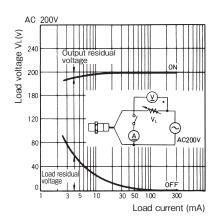
When load current is smaller than 5mA, residual voltage of load becomes large in the TGA Sensor. (Refer to "Residual Voltage Characteristics of Load".) In this case, connect the breeder resistance with load parallel, apply load current at more than 5mA, and set the residual voltage less than return voltage of load. Calculate the breeder resistance and allowable power using the following calculations. TEM recommends to use $20k\,\Omega$ at AC100V and more than 1.5W (3W), and $39k\,\Omega$ at AC200V and more than 3W (5W) for safe. (If heat generation becomes a problem, use the Wattage shown in ().

$$R \le \frac{V}{5-i} (k\Omega)$$
$$P \ge \frac{V^2s}{5-i} (mW)$$

P: Wattage of breeder resistance


i : Current applied to the load (mA)




Load with large inrush current

As for the load with large inrush current (1.8A and above) such as a lamp or motor, the opening and closing element can be deteriorated or be broken. In this case, use along with a relay.

Load Residual Voltage Characteristics

Maintenance

The Axial Guard is packed in grease for shipment. Add the grease shown in the right table once a year or every 100 trips.

Kyodo Oil	Sumitomo Lubricant	Dow Corning Toray	STT
Grease HD	Low temp grease	Molykote 44MA Grease	Solvest 832

Safety Devices

Electronic Shock Relay

	Features	p109
	Applications	p110
	Series reference chart	p111
	Notes when selecting: Outline of Special Models and—Additional Specifications	p112
000	Shock Relay SC Series	p113 to p123
200	Shock Relay ED Series	p124 to p126
	Shock Relay 150 Series	p127 to p130
	Shock Relay SS Series	p131 to p133
•••	Shock Relay SA Series	p134 to p136
	Shock Relay SU Series	p137 to p138
- n n	Shock Relay 50 Series	p139 to p140

Shock Relay

Swiftly detects equipment overload!

The Shock Relay is a current monitoring device that quickly detects motor overload, thus protecting your equipment from costly damage.

Features

1. Instantly detects overcurrent

When the motor current exceeds the predetermined current value, the relay contact signal can be output after a preset time.

For example, when a foreign object gets caught up in the conveyor, the Shock Relay sends a signal causing an emergency stop, thus minimizing equipment damage.

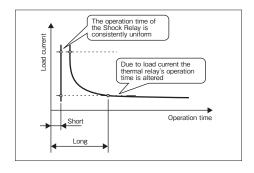
It's not a thermal relay

The purpose of the thermal relay is to protect the motor from burnout. When the motor current continually exceeds the rated value for a certain period of time, an abnormal signal is sent to protect the motor from burnout. Generally, it takes a long time for operation to begin, so it is not suitable for equipment/machine protection.

2. Easy to install on existing equipment

The Shock Relay is an electrical protection device.

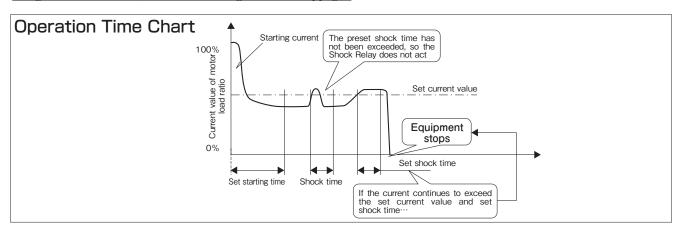
In the case that the Shock Relay is added to existing equipment, it is not necessary to make major modifications to the device as in the case of the mechanical type.


Because the Shock Relay is installed inside the control panel, it can function outdoors or in harsh environments.

3. The abnormal signal is only output under abnormal conditions

The Shock Relay sends an abnormal signal when overcurrent continues to exceed the preset period of time.

Sometimes during normal operation conveyors will experience insignificant short time current overloads due to reasons such as the current pulsation of the equipment, or when packages are put on the conveyor.


By using the shock time function these small overloads will not be recognized as overloads, therefore avoiding nuisance stoppages.

	Operation time	Protected object
Shock Relay	Short	Equipment
Thermal Relay	* Long	Motor

*If the motor current slightly exceeds the preset value, the thermal relay will not work. Even if it does work, it will do so slowly.

	Existing equipment	Environment
Electrical	Easy to install later	Built inside the panel
Mechanical	Difficult to install later	Necessary environmental precautions

Applications

SC Series

Mixer

000=

Operation

- When mixing has just started and the load is heavy, the mixer operates at a low speed.
- 2. When the load becomes lighter after some time of mixing, an output signal of 4 to 20mA is sent to a sequencer to switch the mixing to a higher speed.

Key Points

Output of 4 to 20mA which enables actions according to the actual load.

ED Series

Lifting device for illumination and screens

Operation

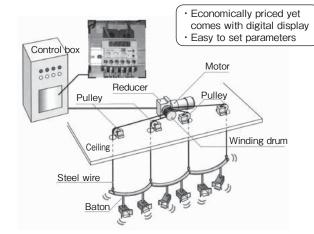
- 1. Due to over-installation of the lighting system, when the total weight of the baton exceeds the permissible load, the lifting device will be automatically shut down.
- 2. When the lifting device becomes overloaded during operation it automatically shuts down.

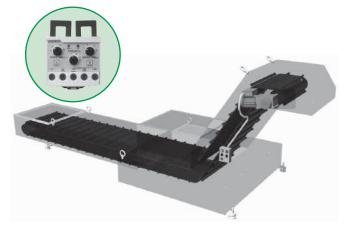
Key Points

During operation the motor current is displayed digitally, and allowable load and stopping due to overload can be set as a digital numeric value.

SS Series

Chip Conveyor


Operation

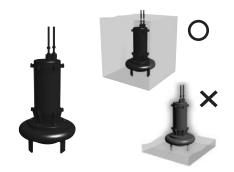

Protects the conveyor from damage when a tool gets caught in its belt.

Key Points

The driver has been made more compact and less expensive.

- *A built-in Shock Relay in the motor terminal box type is available.
 - Ideal for the hollow type reducer (for applications where it is difficult to install a mechanical safety device)
 - Easy to change settings
 - Even with large torque the SS Series retains its compact size

SU Series



Operation

Prevent the pump motor from burnout due to water shortage.

Key Points

Compact body, economical, and test function

Shock Relay

Series reference chart

	•		FD 6 :	150.0		C + C ·	611.6	50.0	
	Series name	SC Series	ED Series	150 Series	SS Series	SA Series	SU Series	50 Series	
	Model No. TSBSCB/S06 TSB020ED-1, -2 to TSB5CB/S60 to TSB550ED-1, -2		TSB151, 152	TSBSS05 to 300	TSBSA05 to 300	TSBSU05-2 to TSBSU60-2	TSB50		
	communication function eco Features selectable self- sele holding/automatic holdir		Digital display, economical, selectable self- holding/automatic reset type	Analog display, self-holding type	Economical, self-holding type	Economical, automatic reset type	Economical, self-holding type under-load detection Type	Economical, automatic reset type	
Motor	(kW) 132 90 75 22 Combined 11 with 3.7 external 0.2 CT 0.1								
	Power source (V)	200/220 400/440	200/220 400/440	200/220 400/440	200/220 400/440	200/220 400/440	200/220 400/440	200/220 400/440	
	Operation setting level	Ampere	Ampere	The ratio of motor-rated	Ampere	Ampere	Ampere	The ratio of motor-rated	
		(A)	(A)	current value (%)	(A)	(A)	(A)	current value (%)	
S	tart time setting range	0.2 to 12.0s adjustable	0.2 to 10.0s adjustable	0.2 to 20s adjustable	0.2 to 30s adjustable	0.2 to 10s adjustable	No	3s (fixed)	
Sł	nock time setting range	0.2 to 5.0s adjustable	0.2 to 5.0s adjustable	0.2 to 3s adjustable	0.2 to 10s adjustable	0.2 to 5s adjustable	0.2 to 30s	0.3 to 3s adjustable	
0	peration power source	AC100 to 240V	100 to 120V or 200 to 240V	AC100/110V or AC200/220V 50/60Hz	AC100 to 240V AC100 to 24		AC200 to 240V	AC100/110V or AC200/220V 50/60Hz	
Con	dition of output relay after activation	Selectable; self-holding or automatic reset	Selectable; self-holding or automatic reset	Self-holding	Self-holding	Automatic reset	Self-holding	Automatic reset	
	Test function	0	O	0	0	0	0	×	
								×	
	Operation display	LED digital display	LED digital display	LED light	LED light	LED light	LED light	×	
*2		LED digital display	LED digital display	LED light	LED light ×	LED light ×	LED light ×	×	
*2	Operation display Open phase, reverse phase, phase unbalance detection Alarm output		0 1 7						
*2	Open phase, reverse phase, phase unbalance detection	0	×	×	×	×	×	×	
*2	Open phase, reverse phase, phase unbalance detection Alarm output	0	× ×	×	×	×	×	×	
C	Open phase, reverse phase, phase unbalance detection Alarm output DIN rail installed	0	× × · · · · · · · · · · · · · · · · · ·	×	× ×	× × · · · · · · · · · · · · · · · · · ·	× × · · · · · · · · · · · · · · · · · ·	× ×	
C	Open phase, reverse phase, phase unbalance detection Alarm output DIN rail installed Display meter	Digital meter current value display Built-in (for large capairly molors, external C1 is used	× × Digital meter current value display	× Analog meter % display External CT	× × Suilt-in (for large capcity motors, external C1 is used	× × Suilt-in (for large capcity motors, external CT is used	× × · · · · · · · · · · · · · · · · · ·	× × × × External CT	
C	Open phase, reverse phase, phase unbalance detection Alarm output DIN rail installed Display meter T (current transformer)	Digital meter current value display Built-in (for large capacity motors, external CT is used together.)	× × Digital meter current value display Built-in	× Analog meter % display External CT separate	× × Built-in (for large capcity motors, external CT is used together.)	× × Swill-in (for large capacity motors, external CT is used together.)	× × × Suilt-in	× × × × × External CT separate	
C	Open phase, reverse phase, phase unbalance detection Alarm output DIN rail installed Display meter T (current transformer)	Digital meter current value display Built-in (for large capairly motors, external CT is used together.)	× × Digital meter current value display Built-in ×	× Analog meter % display External CT separate	× × Built-in (for large capcity motors, external C1 is used together.)	× × Built-in (for large capcity motors, external CT is used together.)	× × × Suilt-in	× × × × External CT separate ×	
C	Open phase, reverse phase, phase unbalance detection Alarm output DIN rail installed Display meter T (current transformer) Impact load detection 1A input	Digital meter current value display Built-in (for large capacity motors, external CT is used together.) ×	× × Digital meter current value display Built-in × ×	× Analog meter % display External CT separate △	× × Suilt-in (for large capaly motors, external CT is used together.) × ×	× × Sullt-in (for large capcity motors, external CT is used together.) × ×	× × × Suilt-in × ×	× × × × External CT separate × ×	
Special models *	Open phase, reverse phase, phase unbalance detection Alarm output DIN rail installed Display meter T (current transformer) Impact load detection 1 A input Lower and upper limit detection	Digital meter current value display Built-in (for large capacity motors, external CT is used together.) ×	× × Digital meter current value display Built-in × ×	× Analog meter % display External CT separate A	× × Built-in (for large capcity motors, external CT is used together.) × ×	× × Built-in (for large capcity motors, external CT is used together.) × ×	X X X Suilt-in X X X	× × × × External CT separate × ×	
C *4 Special models *4	Open phase, reverse phase, phase unbalance detection Alarm output DIN rail installed Display meter T (current transformer) Impact load detection 1 A input Lower and upper limit detection Conforms to UL/cUL standards	Digital meter current value display Built-in (for large capacity molors, external CT is used together.) × ×	X X Digital meter current value display Built-in X X	× Analog meter % display External CT separate	× × Suilt-in (for large capcity motors, external CT is used together.) × × ×	× × Suilt-in (for large capcity motors, external CT is used together.) × × × ×	X X X Built-in X X X	× × × × External CT separate × × ×	
C *4 Special models *4	Open phase, reverse phase, phase unbalance detection Alarm output DIN rail installed Display meter T (current transformer) Impact load detection 1A input Lower and upper limit detection Conforms to UL/cUL standards CE marking	Digital meter current value display Built-in (for large capacity motors, external CT is used together.) × × ×	X X Digital meter current value display Built-in X X	× Analog meter % display External CT separate	× × Suilt-in (for large capcity motors, external CT is used together.) × × ×	X X X Suilt-in (for large capcity motors, external CT is used together.) X X X X	X X X Built-in X X X X	× × × × External CT separate × × × × × ×	
C *4 Special models *4	Open phase, reverse phase, phase unbalance detection Alarm output DIN rail installed Display meter T (current transformer) Impact load detection 1A input Lower and upper limit detection Conforms to UL/cUL standards CE marking Conforms to CCC standards Subtropical specifications	Digital meter current value display Built-in (for large capacity molors, external CT is used together.) × × × ×	X X Digital meter current value display Built-in X X C C C C C C C C C C C	X X Analog meter % display External CT separate A A X X X X	× X X Built-in (for large capcity motors, external Cl is used together.) X X A	× × Built-in (for large capcity motors, external CT is used together.) × × × × × × ×	X X X Suilt-in X X X X X X X	× × × × External CT separate × × × × × ×	
*4 sepond models	Open phase, reverse phase, phase unbalance detection Alarm output DIN rail installed Display meter T (current transformer) Impact load detection 1A input Lower and upper limit detection Conforms to UL/cUL standards CE marking Conforms to CCC standards	Digital meter current value display Built-in (for large capacity motors, external CT is used together.) × × × × × × × × × × ×	X X Digital meter current value display Built-in X X X X X X X X X X X X X	X X Analog meter % display External CT separate A A A A A A A A A A A A A	X X X Built-in (for large capaity motors, external CT is used together.) X X X X X X X X	X X X Built-in (for large capcity motors, external CT is used together.) X X X X X X	X X X Built-in X X X X X X	X	
C *4 Special models *4	Open phase, reverse phase, phase unbalance detection Alarm output DIN rail installed Display meter T (current transformer) Impact load detection 1A input Lower and upper limit detection Conforms to UL/cUL standards CE marking Conforms to CCC standards Subtropical specifications Support for abnormal voltage of control power supply	Digital meter current value display Built-in (for large capacity molors, external CT is used together.) × × × × × × × × × × × × ×	X X Digital meter current value display Built-in X X X X X X X X X X X X X	X X Analog meter % display External CT separate A X X X X X X	X X X Built-in (for large capcity motors, external CT is used together.) X X X X X X X X X X X X X	X X X Built-in (for large capcity motors, external CT is used together.) X X X X X X X X X X	X	× × × External CT separate × × × × × × × × ×	
C *4 Special models *4	Open phase, reverse phase, phase unbalance detection Alarm output DIN rail installed Display meter T (current transformer) Impact load detection 1A input Lower and upper limit detection Conforms to UL/cUL standards CE marking Conforms to CCC standards Subtropical specifications Support for abnormal voltage of control power supply Panel installation	Digital meter current value display Built-in (for large capacity molors, external CT is used together.) × × × × × × × × × × × × ×	X X X Digital meter current value display Built-in X X X X X X X X X X X X X	X X Analog meter % display External CT separate A X X A A A A A A A A A A	S X X Built-in (for large capcity motors, external Cl is used together.) X X X X X X X X X X X X X	X X X Built-in (for large capcity motors, external CT is used together.) X X X X X X X X X X X X X	X	X	
Special models *	Open phase, reverse phase, phase unbalance detection Alarm output DIN rail installed Display meter T (current transformer) Impact load detection 1A input Lower and upper limit detection Conforms to UL/cUL standards CE marking Conforms to CCC standards Subtropical specifications Support for abnormal voltage of control power supply Panel installation Start time modification	Digital meter current value display Built-in (for large capacity motors, external CT is used together.)	X X X Digital meter current value display Built-in X X X X X X X X X X X X X	X X Analog meter % display External CT separate A A A A A A A A A A A A A	X X X Suilt-in (for large capcity motors, external CT is used together.) X X X X X X X X X X X X X	X X X Built-in (for large capcity motors, external CT is used together.) X X X X X X X X X X X X X	X	× × × External CT separate × × × × × × × × × × × × ×	

^{○···}Standard specs △···Special MTO ×···Not available

Notes: *1. This is the added voltage fluctuation range of use in regard to nominal voltage.

Phase reversal the phase of the power supply to the motor becomes inverted.

Phase unbalance ······ the phase current becomes unbalanced. The maximum value of the phase current is detected when it is greater than or equal to 2 x the minimum value.

^{*2.} Open phase the motor lacks 1 phase.

^{*3.} Even the voltage for operation is not standard, it is possible to use the standard units if the voltage fluctuation is taken into consideration and the voltage is within the above range.

^{*4.} For more information, refer to page 112.

 $^{^{\}star}$ 5. Panel mounting type must be selected.

Notes when selecting

 When used with human transportation equipment or lifting devices, install a suitable protection device on that equipment/ device for safety purposes. Otherwise an accident resulting in death, serious injury or damage to equipment may occur.

2. CT (current transformer)

The CT is essential for current detection (150 Series, 50 Series only). For more information about the appropriate CT, refer to the page of each series.

3. Model Selection for Special Capacity and/or Motor Voltage.

Normally a Shock Relay can be selected by motor capacity, but when the motor capacity and/or motor voltage is special (a standard Shock Relay can be used up to a maximum of 600V), select a Shock Relay based on the rated motor current value (set current range).

4. Operation Power Source

The operation power source described in the chart is the standard. For operation power voltages other than the standard, the SS, SA and SC Series have flexible power supplies. The 150 Series with a special operation power source is available as a special MTO product.

5. Output Relay Operation

The output relay operation consists of two modes: The activation type and the reverting type when overcurrent is detected.

In the event of a power outage, make sure to switch off the machine as the sudden activation of the output relay may cause an accident or equipment damage.

1) Activation type when overcurrent is detected

The output relay is activated (contact inverts) only when overcurrent is detected.

Corresponding Models ED Series, SA Series, 150 Series, 50 Series

2) Reverting type when overcurrent is detected

When the power source for the Shock Relay is ON, the output relay is activated (contact inverts). When overcurrent is detected, the output relay reverts to its original state.

Corresponding Model SS Series

3) Activation type/ Reverting type

It is possible to switch between these two modes.

Corresponding Model SC Series

6. Self-holding and Automatic Reset

The methods used for output relay resetting are the self-holding and automatic reset types.

1) Self-holding type

Even after overcurrent has stopped, the self-holding mode continues to function. In order to return it to normal operation, push the RESET button or cut the operation power supply.

Corresponding Models SS Series, 150 Series

2) Automatic Reset Type

The output relay automatically resets after overcurrent is gone.

Corresponding Models SA Series, 50 Series

3) Self-holding Type/ Automatic Reset Type
It is possible to switch between the above two

Corresponding Models ED Series, SC Series

7. Inverter Drive Applicability

- Detection accuracy decreases but generally if it is within the 30 - 60Hz range, it should be insignificant.
- 2)Even within the 30 60Hz range, when the inverter accelerates and decelerates, and the current increases or decreases, the Shock Relay can sometimes cause an unnecessary trip. Slowly accelerate and decelerate or set it so that there is some leeway in load current within the allowable range.
- 3) Connect the CT to the secondary side of the inverter, but make sure to connect the Shock Relay operation power source to a commercial power source (never connect it to the secondary side of the inverter).

8. Note

When the inertia of the equipment/ machine is large or the speed reduction ratio from the motor is large, the Shock Relay may sometimes not work.

Conduct a trial test first before putting it into regular use.

Refer to the manual for further details.

Outline of Special Models and Additional Specifications (Special models are available based on the 150 or 50 Series.)

Special models	Outline of specifications	Special unit model
Impact load detection	Separately from the usual overload, abnormally large current is instantly detected and outputted. Impact load settings can be set from 30%-300%. Impact load shock time is within 0.05s. Other functions and outline dimensions conform to product standards.	TSB151M TSB152M
1A input	When the secondary side of CT is 1A, it can input directly to the Shock Relay. (It's not necessary to consider motor capacity.) Other specifications and outline dimensions conform to product standards.	TSB152C
Upper-lower limit detection	Detects both overload and under-loads; however, because there is 1 output relay, it cannot distinguish between upper and lower limits.	TSB151W TSB152W
Additional specifications	Outline of specifications	Order symbol
Subtropical specifications	Can be used when ambient humidity is 90% RH and below. Other specifications conform to standard products.	S
Support for abnormal voltage of control power supply	Power source voltage: AC230V, AC240V, AC115V, AC120V (please contact us for more information on other voltages)	٧
Panel installation	It can be mounted on the control panel surface and operated.	Р
Start time modification	The integral multiple can be extended for a maximum of 60 seconds. The front panel scale becomes an integral multiple (x2, x3 ···). Other specifications conform to standard products.	TI
Shock time modification	The integral multiple can be extended for a maximum of 60 seconds. The front panel scale becomes an integral multiple (x2, x3 ···). Other specifications conform to standard products.	T2
Automatic reset	For the 150 Series only, the self-holding output relay can be changed to automatic reset.	Н

Shock Relay SC Series

Features

Communication function which makes central monitoring of load in process possible

It is possible to check the condition of the Shock Relay at each process and perform setting changes remotely by using monitoring software (PCON).

4 to 20mA output

It is possible to check /analyze the load by performing an action adjusted to the actual load, or recording into the recorder.

Face mount (Panel type)

Panel type face mounting is available. The display portion can be separated from main unit, and can be installed at the control box panel.

Under current detection

Either alarm output or undercurrent detection output contact can be selected.

Maintenance indicator

Set the operational time until the next maintenance, and a notification will be given when the time is reached.

Thermal Energy (Inverse time characteristic)

Switch to electrical thermal energy to protect the motor from burnout.

CE marking

Conformed RoHS

Works with an inverter*

It is possible to detect current during inverter driving at frequencies of 20 to 200 Hz with high accuracy.

To prevent unnecessary operation of the shock relay due to the increase in current during acceleration/deceleration, accelerate or decelerate slowly or allow a margin in the preset current

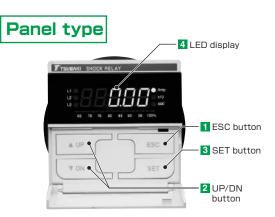
All-in-one type

TSBSCB06 TSBSCB34 TSBSCB60

Panel type

TSBSCS06 + TSBSCD + TSBSCC05 to 30 TSBSCS34 + TSBSCD + TSBSCC05 to 30 TSBSCS60 + TSBSCD + TSBSCC05 to 30

Standard specifications


		All-in-one type		TSBSCB06	TSBSCB34	TSBSCB60			
1	Model No.	Panel type		TSBSCS06	TSBSCS34	TSBSCS60			
		i dilei iype	4t	0.1kW	1303C334	1303C300			
	200V class		2t	0.2, 0.4kW	1.5, 2.2kW	_			
5	200 v class	Number of wires pass through the CT hole	1t	0.2, 0.4kVV 0.75kW	3.7, 5.5kW	7.5, 11kW			
Motor			4t	0.2kW					
>	400V class		2t	0.4, 0.75kW	2 2 2 7 5 5 1 1 4 /	_			
	400 v class		<u>∠r</u> 1†	1.5kW	2.2, 3.7, 5.5kW 7.5, 11kW	15, 18.5, 22kW			
		y of detect current	l II	I.SKVV		15, 18.5, ZZKVV			
		oltage of motor circuit			20 to 200Hz AC690V 50/60Hz				
		onal power source			100 to 240VAC±10%, 50/60Hz				
	Operan	I power source	4t	0.15 to 1.60A (0.01A)	100 to 240 VAC±10%, 30/00HZ	(): Increment			
	Overcurrent	Number of wires pass	2t	0.30 to 3.20A (0.01A)	3.00 to 17.0A (0.1A)). Increment			
	setting	through the CT hole	1t	0.60 to 6.40A (0.04A)	6.00 to 34.0A (0.1A)	10.00 to 60.0A (0.4A)			
	•	Start time	11		o 12.0s (0.2s and larger: Increment 0.				
		Shock time		U fi	0.2 to 5.0s (Increment 0.1s)	. I S)			
5		Current detection accure		.,	5% (In case of commercial power source	1			
<u> </u>	Accuracy	Time detection accur		±.	±5%	cej			
Ē	,	Under current	acy						
5	1	ck when starting up		Trip at 0.2 to 5s (OFF: No action) Set at 2 to 8 times of overcurrent setting value (OFF: No action) Trip after Start time + 0.2s when starting up.					
₩ ₩									
Protection function	Lock when operating			Set at 1.5 to 8 times of overcurrent setting value (OFF: No action), trip at 0.2 to 5s. Trip within 0.15s, (OFF: No action)					
P.	Phase loss		Trip at 0.5 to 5s (OFF: No action)						
		Imbalance		Trip at 1 to 10 (OFE) No atting at 10 to 50%					
		Alarm		Trip at 1 to 10s (OFF: No action) when setting at 10 to 50%					
		Running hour		Output when A, F and H are set (OFF: No action) Trip when 10 to 9990hr is set (OFF: No action)					
		Fail-safe		Activated when setting ON (Conducting normally: Excited, Trip: Non-excited)					
		Rated load		Activated when sen	$3A,250VAC (\cos \phi = 1)$	i, IIIp. Non-exciled)			
ㅎ	Minin	num allowable load *1			DC24V, 4mA				
<u>ē</u>	/////////	Life		Activation 100,000times at rated load					
Output relay	Co	ontact arrangement		OC:1c,AL/UC/TO:1a					
늄	CC	Self-holding		E-r: Manual release or reset of power source, H-r: Only manual release					
0	Reset	Auto-reset							
	Δ	nalog output			A-r: Auto-reset and set the return time at 0.2s to 20min Analog output 4 to 20mA DC Output (OFF: No action) Allowable load resistance: 10Ω and below				
		nunication output		Andiog output 4 to ZottiA DC (RS485/Modbus	da resisiance. 1002 and below			
		nce (Between housing-circui	+1						
Die	lectric strength	Between housing-cir		2000VAC 60Hz 1min.					
Dio	voltage	Between relay conto		1000VAC 60Hz 1min.					
	, on ago	Place	2010	Indoors, where it will not get wet					
늏	Δr	nbient temperature			- 20 to + 60 °C				
Use environment		Ambient humidity			30 to 85%RH (No dew condensation)				
US I	,	Altitude			2000m and below				
<u>-</u>		Atmosphere			No corrosive gas, oil-mist or dust				
₫		Vibration			5.9m/s ² and below				
	Pow	er consumption			7VA and below				
		pprox. mass			0.3kg and below				
	Approx. mass			I.	o.org and below				

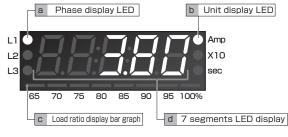
^{*1:} In case inputting the output relay contact to programmable controller (PLC) directly, input through the relay for minute current, because contact failure may happen due to minute current.

Part names and Functions

1 ESC button (reset)

Releases the trip or returns back to the initial setting display.

Pushing the reset button after completing parameter settings to return back to initial screen.


2 UP/DN button (UP/DOWN)

Switch to parameter mode and change data settings.

3 SET button (set)

Confirm and register parameter setting data.

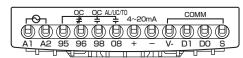
4 LED display

a. Phase display LED

Displays the phase (L1(R) \rightarrow L2(S) \rightarrow L3(T)) which shows the current, changes every 2 seconds.

b. Unit display LED

LED which Indicates the unit.


c. Load ratio display bar graph

Can be utilized as a guide when setting OC (Overcurrent setting value). Displays the ratio as a percentage (%); Operational load current/OC current setting value

d. 7 segment LED

Displays operation current, parameter setting value, cause of trip, etc.

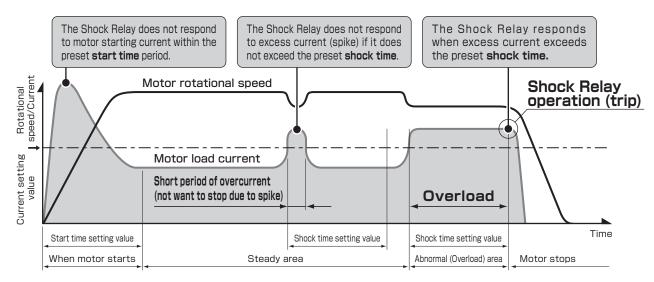
5 Terminal arrangement

Applicable wire

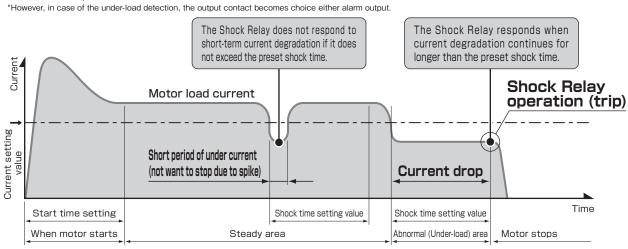
Wire: ISO 1 to 25mm², AWG#18 to 1475°C copper wire Strip length: 8mm

No. of connectable wires: Up to 2 for one terminal Tightening torque: 0.8 to 1.2N·m

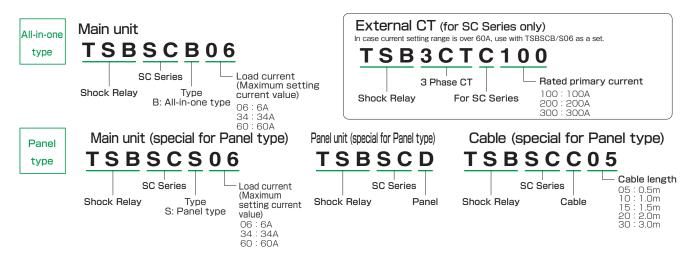
Terminal symbol	Function	Explanation
A1, A2	Operational power source	Connect AC100 to 240V, commercial power source
95	Common terminal	Terminal 96, 98, 08 common
96	OC output	b contact: Normal-close, Overcurrent-open (In case FS:OFF)
98		a contact: Normal-open, Overcurrent-close (In case FS:OFF)
08	AL/TO/UL output	Alarm output/Running hour output/Undercurrent output
+	Analog output	Output analog current DC4 to 20mA
V-, D1, D0, S	Terminal for communication	Connect when using communication function.


Digital ammeter functions

- While in normal operation, it is possible to change the displayed phase, and set it by pushing the SET button. Release by pushing the ESC button.
- 2) Trip record (3 most recent) can be viewed by pushing and holding the ESC button 5 sec. or longer. Push the UP/DN buttons to cycle through and confirm current values (cycles L1 →L2→L3→L1→...). The order of the trip record appears on a bar graph in the order of 100%, 95%, and 90% for easy confirmation. Release by pushing the ESC button.

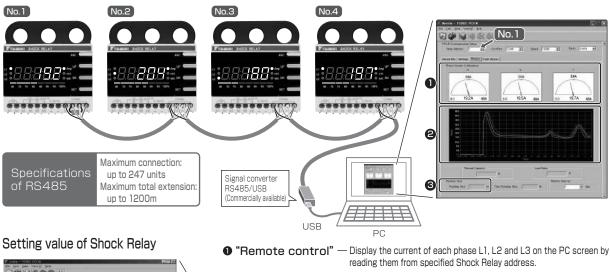

Operating mode

Overload operating mode



Light load operation (Under-load detection) mode

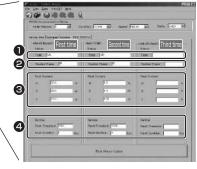
Once the motor current falls below the preset level, under-load is detected and a signal is sent to stop the motor.



Model No.

Specific function of SC Series

Communication function


1) "Read-in setting values" Read-in the setting values from a specified Shock Relay address and display them on the PC screen.

"Writing setting values" Setting values edited on the PC can be written to a specified Shock Relay address.

3) "Back up of setting values" Setting values edited on the PC can be backed up to a text file.

- Display current change" Plot the current value of each phase at specified intervals. Data for the last 159 times can be displayed.
- 3 "Display accumulated operation time" Can be utilized for equipment maintenance such as oil filling, filter cleaning etc.

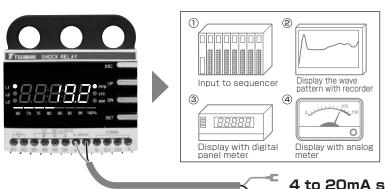
Record of trip

"Trip record on last 3 times"

Trip record on last 3 times of Shock Relay of designed address is displayed on the screen monitor

- Cause of the trouble "Gurrent value when trouble happened"
- 2 "Phase caused trouble" 4 "Setting value when trouble happened"

4 to 20mA analog signal


"What is a 4 to 20mA analog signal?"

A 4 to 20 mA analog signal is a standard instrumentation signal used around the world. Instrumentation signal:

- · Voltage signal: DC 0 to 5 V, DC 0 to 10 V, etc.
- · Current signal: DC 4 to 20 mA, DC 0 to 20 mA, etc.

Current signals are less susceptible to influence from noise than voltage signals.

In addition, DC 4 to 20 mA, when compared to DC 0 to 20 mA, is more precise in the event of wire disruption or breaks. Therefore, DC 4 to 20 mA is used frequently, specifically in the case of long transmission distances (several tens of meters) or in answer to requests for reducing noise influence..

<Example of application>

- ①Automatic control of the input and viscosity depending on the load by inputting the load current of a crusher or mixer to the sequencer.
- © Figuring out the operation and loading conditions for the equipment by recording the load current of a trial unit, and using it as the basis for an optimal equipment design.
-), @Activation of a digital and analog meter with DC 4 to 20 mA signal for remote centralized monitoring of pumps, etc.

In the case of TSBSCB60 (Max. 60A), it is possible to transmit DC 0 to 60 A as a DC 4 to 20 mA signal. In addition, output value correction is available due to the scaling adjustment function of the DC 4 to 20mA output of the TSBSC Series.

4 to 20mA signal

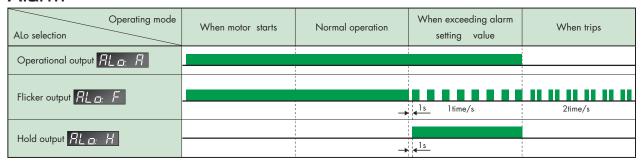
Setup steps

ltem	Operation button	Operation instruction
1. Selection of parameter	UP/DN	Select the setting parameter by pushing the UP/DN button.
2. Preparation for setting	SET	The setting value begins blinking when the SET button is pushed after selecting a parameter.
3. Selection of setting	UP/DN	Push the UP/DN button until the desired setting value is shown.
4. Register of setting	SET	Press the SET button after selecting the setting value, the blinking value indication returns to normal and the setting value is registered.
5. Initial indication	ESC	Push the ESC button to return to the initial indication after completing the settings. In the case that no button is pushed, returns to initial indication automatically after 50 seconds.

Parameter

	I. Manu		Parameter		Explanation of function															
No.	Menu	Initial Value	Setting Value			E	kplanation of tui	nction												
			0	All parar	meter settings a	re possible.														
1	Parameter lock	PE. D		To lock parameter settings, input "1" for every parameter set.																
•		1	To unlock		put "1", the	en "0". When	PE:	is displayed, 1	he setting is											
2	Selection of	Ph.3Ph	3Ph	Monitori	ng 3 phase mo	tor														
2	phase No.	/ / l: <u>_</u>]/ / l	1Ph	Monitori	ng single phase	e motor.														
			dE	Operate	s with definite t	ime charact	eristic.													
3	Operation	Operation F.COF	th	characte	ristic.		cteristic and is		as in the case	of thermal										
ŭ	curve	ln	Operate 120.)	s with inverse	time charac	teristic. (Refer t	o Inverse c	haracteristic ch	art on page											
			no	Setting fo	or disabling the	upper limit	detection.													
4	CT ratio	c	1t,2t,4t	Setting the number of motor wires that pass through the CT (1t: 1time, 2t: 2 times, 4t: 4 times) Type 34; only 1t and 2t, Type 60; only 1t																
		100,200,300	Select w	hen using Exter	nal CT (Type	e 06 only)														
_	5 d C f	F5:oFF	F5oFF	F5:oFF	F5.oFF	F5.oFF	F5:oFF	F5:oFF	<i></i>	CC_CC	cc_cc	EC_EE	oFF	Normal	mode When	a trip occur	s, the relay turns	s ON (95-96	6: Open, 95-98	: Closed).
5	Fail Safe								on	Fail safe * This set		en a trip occi	rned on, the relay urs, the relay turns power reset.							
6	Reverse phase detection	r P:oFF	oFF on	Set to "or	n" when detecting	g phase-rever	sal.													
				over 32		ne characte	t. For type 34 c ristics "th" and		current value c	Unit: (A)										
				CT Ratio	06 ty	pe	34 ty	ре	60 ty	ре										
				CT Kallo	Setting range	Increments	Setting range	Increments	Setting range	Increments										
	Over current			1t	0.60 to 6.40	0.04	6.00 to 34.0	0.2	10.0 to 60.0	0.4										
7	threshold	oc:540°	See the right	2t	0.30 to 3.20	0.02	3.00 to 17.0	0.1												
				4t	0.15 to 1.60	0.01				/										
				100	12.0 to 128	1														
				200	24.0 to 256	1														
					36.0 to 384	1														

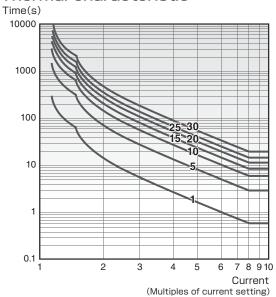
Parameter


		Para	meter	- 1
No.	Menu	Initial Value	Setting Value	Explanation of function
8	Start time	dE: 02.	0 0.2 to 12.0s	When setting the inverse time characteristic "In", be aware that it operates in Cold characteristic from the starting of the motor until the current becomes lower than OC setting, and then operates in Hot characteristic after that. The relay does not output within the time setting, so as to not operate when the motor starts. When inverse time characteristic "In" is set, it operates in Hot characteristic after Start time.
9	Over current Shock time	ot: 02.	0.2 to 5.0s	Select the operation characteristic when inverse time characteristic "th", "In" are set. (Refer to Thermal and inverse characteristic charts)
10	Under current threshold	uc:oFF°	oFF See the right	Set current value when detecting undercurrent. This cannot be set higher than the overcurrent value. Relay output for undercurrent is as follows: Alarm ALo is set to "except uc": outputs at OC terminal Alarm ALo is set to "uc": outputs at AL/UC/TO terminals
11	Under current Shock time	ut: 02.	0.2 to 5.0s	Set continuous under-loading time of under-current setting.
12	Phase loss	PL:oFF	oFF	Set to "on" in the case that phase loss is detected.
13	Phase loss time	<i>PLE.</i> 05.	0.5 to 5s	Set operation time in the case that phase loss is detected. When phase loss detection is set to oFF, it does not display.
14	Imbalance threshold	Ub:oFF	oFF 10 to 50%	Set to 10 to 50% in case imbalance is detected. Imbalance ratio (%) = \frac{(Max.Current-Min.Current)}{Max.Current} \times 100
15	Imbalance duration	UbE: 1	1 to 10s	Set operation time in the case that an imbalance is detected. When imbalance detection is set to oFF, this does not display.
16	Stall threshold	Sc:oFF	oFF 2 to 8 times	Set the ratio against overcurrent setting in the case of detecting the lock when starting. Setting range; Sc setting value \times OC \leq 250A. This parameter is not displayed when the start time is set to 0s.
17	Jam threshold	JR:oFF	oFF 1.5 to 8 times	Set the ratio against overcurrent setting in the case of detecting the lock when running. Setting range; JA setting value \times OC \leq 250A.
18	Jam fault duration	1E: 0.2.	0.2 to 5s	Set the operating time in the case of detecting the lock when running. When lock JA is set to oFF, it is not displayed.
19	Analog Output	r 5:5:40°	See the right	Set the current value as analog current output scale for 20mA output. Refer to page 117 Current setting chart for setting range.
	3.		oFF	Set when disabling analog current output.
			no	Set when disabling alarm output.
20	Alast	RLana	A F H	Set when enabling alarm output. Refer to the table on page 119.
20	Alert		to	Set to trigger an output when the running hour is set.
			UC	Set in the case of detecting under-load.
		RL:oFF	oFF 50 to 100%	Set the ratio against the OC current when alarm outputting.

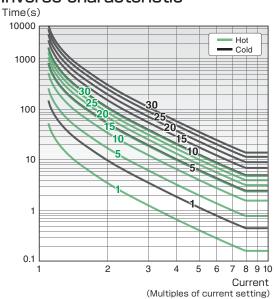
Parameter

NI.		Para	meter	r L e II e
No.	Menu	Initial Value	Setting Value	Explanation of function
			E-r	Self-holding after trip, back in when power is reset or ESC button is pushed.
21	Reset	r E:E-r	H-r	Self-holding after trip, back in when ESC button is pushed.
21	Kesei		A-r	Automatic reset after trip.
		Ar: 05.	0.2s to 20min	Set automatic reset time
22	Reset limitation	rn:oFF	oFF	There is no limit to the number of resets
22	22 Reset limitation	1 1 (1_1 1	1 to 5	Set the number of reset operations (within 30 minutes).
23	Total running hour	-Erh-		Display total running hours
24	Running hour	-rh-		Display operational time since inputting running hours setting time.
25	Running hour setting	rh:oFF	oFF 10 to 99990hr	To output the running hours, set the number of hours. The running hours will be counted from the point when the input is completed.
		Rd: 1	1 to 247	Set the communication address
26	Communication	<i>6P: 19.2</i>	See the right	Set the communication speed 1.2, 2.4, 4.8, 9.6, 19.2, 38.4kbps
20	setting	PrEun	odd, Evn, non	Set the parity
		LE:oFF	oFF, 1 to 999s	Set the waiting time until an error is displayed when there is communication trouble.
27	Test mode	ŁE5Ł		In the case that the set button is pushed when this is displayed, after 3 sec. + Shock Time, Frad is shown and relay is output.

Alarm



Trip display


Trip function	Indication	Contents of trip	Solution
Over current	*ac: 3.5*	After the preset Start time period, the current exceeds the upper setting value and continues to flow longer than the preset Shock time. Trip current is 3.6A.	Check the abnormality of machine
Phase loss	•PL	Trip due to phase loss of R(L1) phase	Check the abnormality of machine
Phase reversal	-,-P-	Trip due to phase reversal	Check phase sequence with phase sequence meter
Stall (Lock when starting)	•5 <i>c:35.</i> 0°	When the motor starts, the current exceeds Sc setting value and continues to flow longer than the preset Start time.	Check the abnormality of machine
Jam (Lock when operating)	.1R: 15.8°	When motor is operating, the current exceeds Ja setting value and continues to flow longer than Jt setting time.	Check the abnormality of machine
Imbalance	.Ub: 4.2°	Current of each phase becomes imbalanced larger than the Ub setting value, and continues to remain imbalanced longer than the Ubt setting time.	Check the power source, motor and motor wiring
Under current	•uc: (6°	After the preset Start time period, the current under-runs the lower setting value and continues to flow longer than the preset Shock time. Trip current is 1.6A.	Check the abnormality of machine
Limitation of the number of auto- reset	rnFuL	Number of auto-resets after trip exceeds the setting value within 30 minutes.	Check the abnormality of machine

Inverse time characteristic charts

Thermal characteristic

Inverse characteristic

Number of motor wires that pass through the CT (current transformer) hole

Refer to the table below for the number of motor wires that pass through the CT.

The values in this table are just a guide for when the motor is used at load ratio of 80 to 100%. In case that motor load ratio is low, increase the number of motor wires to pass through to improve the setting accuracy.

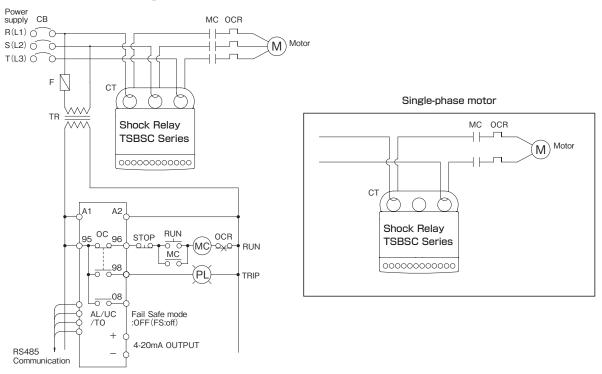
In addition, in case of motors not in the table below (small size, single phase, different voltage, etc.), select and set an appropriate model and number of motor wires that pass through the CT based on the setting current values.

3 phase AC 200V class motor					
kW	Applicable Shock Relay Model No.	Number of motor wires that pass through the CT			
0.1	TSBSCB/S06	4			
0.2	TSBSCB/S06	2			
0.4	TSBSCB/S06	2			
0.75	TSBSCB/S06	1			
1.5	TSBSCB/S34	2			
2.2	TSBSCB/S34	2			
3.7	TSBSCB/S34	1			
5.5	TSBSCB/S34	1			
7.5	TSBSCB/S60	1			
11	TSBSCB/S60	1			
_	_	_			
_	_	_			
_	_	_			

	3 phase AC 400V class motor					
kW	Applicable Shock Relay Model No.	Number of motor wires that pass through the CT				
_	_	_				
0.2	TSBSCB/S06	4				
0.4	TSBSCB/S06	2				
0.75	TSBSCB/S06	2				
1.5	TSBSCB/S06	1				
2.2	TSBSCB/S34	2				
3.7	TSBSCB/S34	2				
5.5	TSBSCB/S34	2				
7.5	TSBSCB/S34	1				
11	TSBSCB/S34	1				
15	TSBSCB/S60	1				
18.5	TSBSCB/S60	1				
22	TSBSCB/S60	1				

Note 1) Set the parameter "CT ratio" based on the number of motor wires that pass through the CT.

Specification of External CT


	Model No.		TSB3CTC100	TSB3CTC100 TSB3CTC200				
_	Cla	ass		Grade 3				
I CT	Rated primary current		100A	100A 200A				
rne	Rated seco	ndary current		5A				
External	Rated	burden	5VA					
ш	Rated fr	requency	50/60Hz					
	Approx	x. mass		0.9kg				
ref.	Applicable mail	n unit model No.		TSBSCB/S06				
	Adapted	200V class	15 to 18.5kW	22 to 37kW	45 to 75kW			
For	motor	400V class	30 to 45kW	55 to 90kW	110 to 132kW			

²⁾ In case that the motor kW exceeds the above table, use external CT.

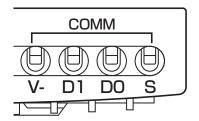
Connection diagram

Basic connection diagram

- Note) 1. If necessary, set transformer (Tr) depending on the voltage on the Shock Relay and electromagnetic contactor (MC). Install an isolating transformer if there is any harmonic noise generating device, such as an inverter.
 - 2. Output relay; Normal condition: not excited, Trip condition: excited
 - 3. Coil capacity of MC connected with output relay of Shock Relay is;

Throw: less than 200VA, Hold: less than 20VA

As a guide, in case of TSBSCB60/TSBSCS60, set auxiliary relay, and activate auxiliary relay with output relay of the Shock Relay, and open/close MC with the contactor of the auxiliary relay.


Communication function

Communication specification

ltem	Content	
Transmittance standards	RS-485	
Max. transmittance distance	1200m (Depends on transmittance speed)	
Transmittance system	Half-duplex system Protocol: modbus	
Transmittance speed	1.2k to 38.4kbps	

Connection with signal converter

- 1) Prepare a signal converter to use the monitoring software (PCON) of TSBSC.
- 2) Use twist cables and connect as follows.

Terminal	Signal	RS485 Terminal
V-	GND	GND
D1	Data (B)	Tx+
D0	Data (A)	Tx-
S	Shield	Shield

Communication function

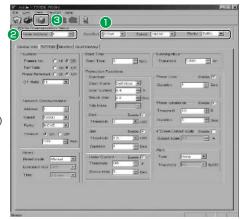
Monitoring software (PCON)

Monitoring software for PC is available.

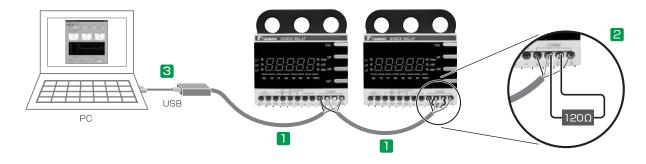
It is possible to communicate between PC and Shock Relay through a signal converter (RS485/USB; commercially available).

Main function

The following can be performed on the PC screen;


- ♦ setting of the parameters for the Shock Relay
- monitoring of the changes in the motor current
- ♦ confirmation of the trip record

Things to prepare


- ① RS485/USB signal converter (commercially available)
- ② USB cable (commercially available; which fits the size of slot of ①)
- ③ Twist pair cable with shield (commercially available)
- 4 Terminating resistor (120 Ω , 1/4W and larger)
- ⑤ Special monitoring software "TSBSC PCON" CD-ROM
- * For 4 and 5, contact TEM.

Connection method

- 1 Connect the terminal V-, D1, D0 and S with the cable.
- **2** Connect the terminating resistor 120Ω between terminating terminal D1 and D0.
- 3 Connect the PC and the signal converter with a USB cable.

- Communication setting at PCON side
- Selection of the other communication party
- Starting of the communication

Setting the address of the main unit

Set the address and the communication method to each Shock Relay main unit in advance, before starting communication. Set the following item by calling up parameter 26 communications setting.

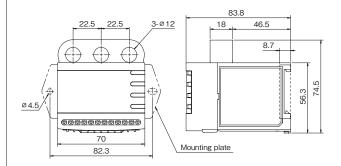
Address (1 to 247), Communication speed (1.2 to 38.4kbps), Parity (EVEN, ODD, non), Communication loss time (off, 1 to 999s)

Setting of the special software "TSBSC PCON"

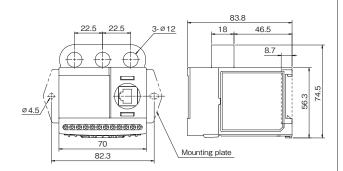
First, install the special monitoring software and signal converter software to the PC.

- 1) When the desktop icon is clicked, the software is activated, and the PCON operating display appears on screen. Set the communication settings for the PCON side to be the same as the communication method for the Shock Relay main unit. In addition, select the PC port number in which the USB cable is connected, as [ComPort].
- 2 Select the address of the Shock Relay of the other communication party.
- 3 Click the link icon to begin communication.

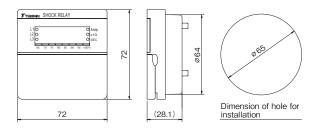
 * In the case that communication with a PLC (sequencer) is necessary without using PC monitoring software, consult TEM.

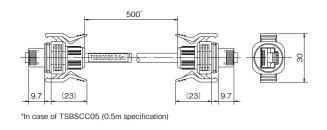

Getting method of the monitoring software (PCON)

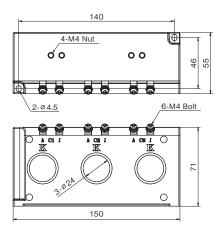
Consult TEM.



Outline dimensions


ALL-in-one type main unit TSBSCB06, TSBSCB34, TSBSCB60


Panel type main unit TSBSCS06, TSBSCS34, TSBSCS60


Panel unit (special for Panel type) **TSBSCD**

Cable (special for Panel type) TSBSCC05, TSBSCC10, TSBSCC15, TSBSCC20, TSBSCC30

External CT TSB3CTC100, TSB3CTC200, TSB3CTC300

Features

Displays both the motor current and each setting value digitally

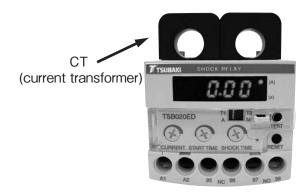
Economically priced

CT included in one compact unit

Works with inverter

Current can be precisely detected when inverter is operating between 20 - 200Hz.

Choose between self-holding output relay and automatic reset


CE marking

UL · cUL certification

CCC certification

*To prevent an unnecessary trip due to an increase of amperage when accelerating and decelerating, slowly accelerate and decelerate or allow some leeway for set current.

CT all-in-one model

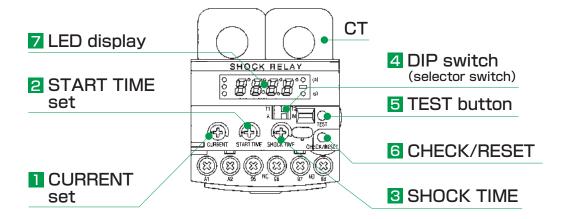
TSB020ED-1 TSB220ED-1 TSB020ED-2 TSB220ED-2 TSB075ED-1 TSB550ED-1 TSB075ED-2 TSB550ED-2

Standard Specifications

	Mod	-1	Control power supply voltage 10	0 to 120V	TSB020ED-1	TSB075ED-1	TSB220ED-1	TSB550ED-1	
	Mod	ei	Control power supply voltage 20	0 to 240V	TSB020ED-2	TSB075ED-2	TSB220ED-2	TSB550ED-2	
		200V	No. of wires that pass through	T2	0.1kW	0.4kW	1.5kW	3.7kW	
	Applicable	class	the CT hole, DIP switch*4	T1	0.2kW	0.75kW	2.2kW	5.5kW	
Motor	motors *1	400V	No. of wires that pass through	T2	0.1, 0.2kW	_	2.2, 3.7kW	7.5kW	
ž		class	the CT hole, DİP switch*4	Tl	0.4, 0.75kW	1.5kW	5.5kW	11kW	
		Frequenc	y of motor current			20 to 2	200Hz		
		Maximum ı	motor circuit voltage			AC600V	50/60Hz		
Or	eratina no	wer supply	1			100 to 120VAC	±10%, 50/60Hz		
اب —			2			200 to 240VAC	±10%, 50/60Hz		
			No. of wires that	T2	0.20 to 1.20A	1.20 to 3.20A	3.00 to 10.0A	6.00 to 26.0A	
		ent setting	pass through	12	(0.01A increments)	(0.02A increments)	(0.1A increments)	(0.2A increments)	
ions		range *3	the CT hole, DIP switch	T1	0.40 to 2.40A	1.80 to 5.80A	4.00 to 14.0A	9.00 to 34.0A	
Protection functions	Overload		DIP switch	''	(0.02A increments)	(0.04A increments)	(0.1A increments)	(0.25A increments)*2	
on			Start time*3		0.2 to 10.0s (0.2s increments)				
tecti			Shock time*3		0.2 to 5.0s (0.2s increments)				
70	Acauracy		t detection accuracy		$\pm 5\% \pm 1$ digit or less (except, when combined with the inverter, $\pm 10\% \pm 1$ digit or less)				
	Temporal accuracy				$\pm 5\% \pm 1$ digit or less				
	Locked rotor start				It will trip if the set current value exceeds 200% when starting, after the set start time +0.2s has elapsed				
			tated load			3A, 250VA			
>			m allowable load			DC24\	<i>'</i>		
Output relay			Life span			100,000 times			
pot		Conto	act constitution			1a			
3		(Operation		-	ation/normal operation: no e			
	Re	set	Trip reset, DIP switch	Α	After r	resetting to normal current val		lly reset	
5			100	М	Can be manually reset by pressing the "RESET" button				
Insulation			case and circuit			DC500\	•		
tage			case and circuit			2000VAC 60			
?	Relay contact electrodes				1000VAC 60Hz: 1 minute				
nmen	Between case and circuit Relay contact electrodes Location Ambient temperature Ambient humidity Altitude					Indoors, where i			
NIZO						-20 to			
ork e		Amb	pient humidity			30 to 85%RH (n	<u> </u>		
						2000m			
		Powe	r consumption			2.0W			
			Mass			0.25kg	or less		

^{*1.} The applicable motors are just a rough indication for reference. Make your selection based upon actual electrical current value.

Select by electrical current value for single-phase motors as well.


*2. Set values 10A and higher are displayed as described on the right due to a maximum number of display digits. 10.0A→10.2A→10.5A→10.7A→11.0A

 $^{^{\}star}$ 3. A ± 1 digit error can occur with the current and the set time in the range indicated.

^{*4.} Be sure to make one turn when selecting T1 and two turns when selecting T2.

Part Names and Functions

Current Setting (CURRENT)

Sets current at the value at which trip occurs.

2 Start Time Setting (START TIME)

Sets start time (start compensating time). When the motor starts, there is a possibility that the motor current will exceed the set current value, but during the start time period it will not trip.

Shock Time Setting (SHOCK TIME)

Sets shock time (output delay time). When the motor current exceeds the set current value the count begins, and when shock time has elapsed, it will trip.

4 DIP Switch (selector switch)

Setting	Purpose				
No. of motor wires that pass through the CT T1/T2	Current value set range selection	Τl	No. of passes through the CT:1	T2	No. of passes through the CT:2
Trip reset A / M	Output relay reset selection	А	It automatically returns from the trip state 1 second after current value returns below the current setting value.	М	Trip state is maintained until the check/ reset button is pressed. It then resets.

5 TEST Button (TEST)

When the LED displays current value, pressing the TEST button will carry out an operation test.

6 CHECK/RESET Button (CHECK/RESET)

[During normal operation]

By pressing the CHECK/RESET button when the LED displays current value, it switches to the setting screen.

[During trip]

When the CHECK/RESET button is pressed, trip is cleared and the display switches to the current value. [During set-up]

When the LED display is at the setting screen, pressing the CHECK/RESET button will switch between the current, start time, and shock time settings, in this order.

7 LED Display

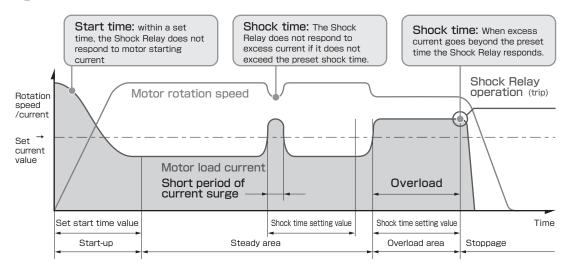
Current value and set current are displayed when (A) is indicated on the display screen (to the left of the A). (A = ampere)

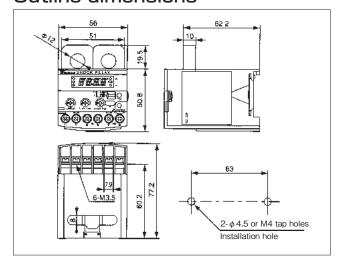
Start time and shock time set up are displayed when (s) is indicated on the display screen (to the left of the s). (s = second)

Shock Relay

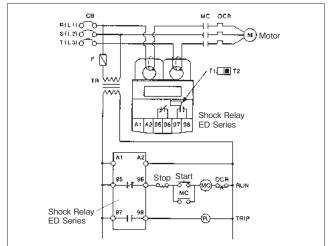
The ED Series has the following features. which the Meter Relay (analog type) does not include:

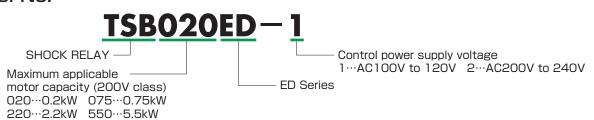
- Start time (starting compensation) function
- Shock time (output delay) function
- Compact design, includes CT
- Works with inverter driving
- Choose between self-holding output relay and automatic resetting
- Includes test function
- Detection of locked rotor start



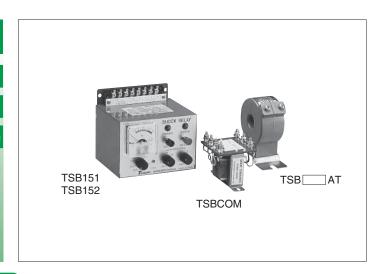

ED Series

Meter Relay (analog type)


Operating Mode


Outline dimensions

Basic connection diagram


Model No.

Shock Relay 150 Series

Features

- 1. Analog meter
- 2. Self-holding type
- 3. Special MTO models and additional specifications are available

Standard Specifications

Fu	ınction	Model	TSB151-COM	TSB152, TSB AT'2		
		200V class	0.2 to 3.7kW*1	5.5 to 90kW		
	Motor	400V class	0.2 to 3.7kW	5.5 to 90kW		
on		Ambient temperature	−10°C to 50°C			
Common		Relative humidity	45 to 85% RH; there	e is no condensation		
Ö	Work environment	Vibration	Less than	5.9m/s ²		
		Height	Less than	1000m		
		Ambient atmosphere	No corrosiv	ve gas, dust		
	Main (unit model	TSB151	TSB152		
	Load current	(current range)*4	30 to 130% (100%=5mA)	30 to 130% (100%=5A)		
	Current ac	ccuracy setting	±10% (f	ull-scale)		
	Time setting range		0.2 to	o 20s		
	Time selling runge	Shock time*4	0.2 to 3s			
	Control power	er supply voltage	AC100/110V or AC200/220V 50/60Hz $\pm 10\%$			
	Max. motor	r circuit voltage	AC600V, 50/60Hz			
	Current detecting system		1 phase CT system			
		Self-holding	Self-holding available			
Jn:		Normal state	Output relay			
Main Unit	Output relay	Abnormal case	Output relay excited			
Ž		Contact rating	1c contact, AC250V 0.2A			
		Minimum applicable load*3	DC24\			
	Output relay life-span	Mechanical	10,000,0			
	' ' '	Electric	100,00			
	Test	function	Inclu			
		Gap between circuit and housing	AC1500V, 60Hz, 1 minute (power			
	Withstand voltage	Contact gap	AC700V, 60			
		Circuit gap	AC1500V, 60Hz, 1 minute (power			
		Mass	1.0kg	1.2kg		
		med power	1.2			
	External acco	essory CT model	TSB COM	TSB AT (Rated input current value)		
\Box	Rated in	nput current	0.75A, 1.5A, 1.75A, 2.0A, 2.5A, 3.3A, 4.0A,	100A, 120A, 150A,		
External		<u> </u>	5.3A, 7.0A, 9.0A, 10.0A, 16.0A	200A, 250A, 300A		
Exte		utput current	5mA	5A		
		ed load	0.5VA	5VA		
		Mass	0.5kg	0.6kg		

Notes: *1. If the TSBCOM-A (small capacity type CT) is used, it is possible to use a less than 0.1kW motor. *2. TSB152 and TSB ____AT (CT) have different model numbers.

^{*3.} When directly inputting output relay contact into the programmable controller (PLC), be aware that a minute electric current can cause contact failure.

As for the input to PLC, it is recommended to drive the relay coil for minute current by relay signal of Shock Relay at first, then input this relay contact to PLC.

*4. Current and time setting ranges can be set within the warranty range, but not the upper or lower level of setting volume.

Activation (SHOCK)

Test

Reset

Shock time volume

Start time volume

0.2 to 20s range

0.2 to 3s range

Part Names and Functions

% Display Meter

The meter displays the percentage of the motor rated current vs. the motor current in operation. (The rated current here is based upon the Motor Rated Current CT selection table on page 100.)

LOAD CURRENT volume

Can be set to stop the motor at the desired level when overload occurs. When the motor current exceeds the preset CURRENT value (at the same time, overload time continues to exceed the preset SHOCK TIME), the Shock Relay activates and stops the motor.

% Adjust Volume

If the input from CT is 5mA (TSB151) or 5A (TSB152), the meter can be modified in the 95 to 130% range. Also, after adjusting the % adjuster, the meter scale indicator and load current set scale are the same.

START TIME volume

When the motor starts there is a possibility that the motor current will exceed the set current value.

To prevent the Shock Relay from tripping due to the spike in start current, start time is set a little bit longer than the period of motor start up to ignore the spike.

Terminal

The terminal is located on the upper portion of the Shock Relay, making wiring easy.

POWER indicator

The POWER indicator lights when Shock Relay is turned on.

Activation (SHOCK) indicator

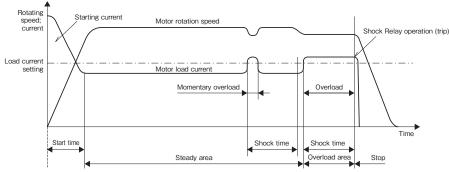
The activation (SHOCK) indicator lights when the Shock Relay operates.

TEST button

Shock Relay operation can be tested stand-alone or during motor operation.

(When testing the Shock Relay, continue to press and hold the TEST button longer than the set START TIME or SHOCK TIME, whichever is longer.

RESET button


After the Shock Relay activates, the RESET button is used to cancel the self-holding of the output contact.

SHOCK TIME volume

Shock time is the amount of time set until the Shock Relay will activate when overload occurs. Within the set time, the Shock Relay will not activate, even if it is overloaded.

Operating mode

Overload operating mode

Terminal

SUBAK

R R R R R R R R

TSUBAKIMOTO CHAIN CO.

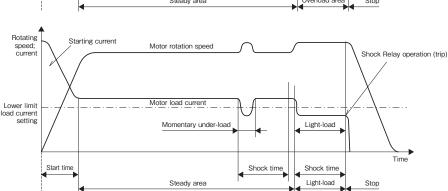
% Adjust Volume

% Display meter

Load current volume

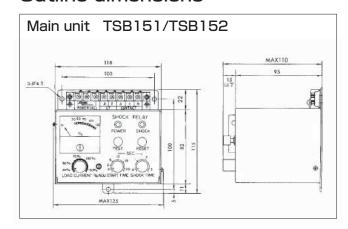
of motor rated current.

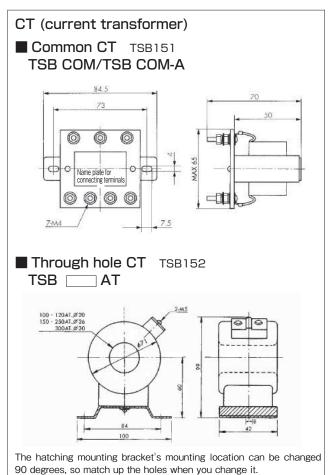
Setting range is 30 to 130%


Power

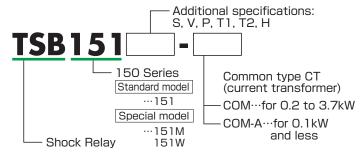
SHOCK RELAY

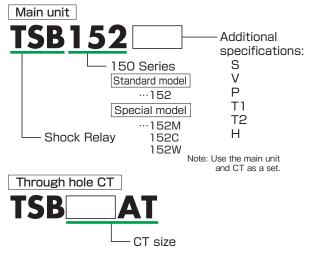
■ Light-load operating mode TSB151W, 152W


(Lower/upper limit detector specifications)


Note: Because there is only one output relay, it is not possible to distinguish between overload operation and light-load operation.

Shock Relay


Outline dimensions



Model No.

■ Motor for 3.7kW and less

■ Motor for more than 5.5kW

Standard model and special model additional specifications chart

	additional specifications	Subtropical spec.	Control power supply voltage modification	Panel mounting	Start time modification	Shock time modification	Auto-reset
Model		S	V	Р	T1	T2	Н
Standard	151/152	0	0	0	0	0	0
Impact load detection	151M/152M	0	0	0	0	0	0
1A input (motor capacity is not necessary to consider)	152C	0	0	0	0	0	0
Upper/lower limit detection	151W	0	0	0	0	0	0
detection	152W	0	0	0	0	0	0

Notes: 1. Refer to page 112 for detailed specifications

2. For additional specifications V, specify operation power source

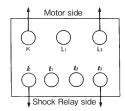
3. For additional specifications T1 and T2, indicate the start time and shock time modification time.

Multiple specifications available

CT (current transformer)

■ Common CT: for motors up to and including 3.7kw

- · TSB COM (standard type) can be used with 0.2 to 3.7kW
- · TSB COM-A (small capacity type) can be used with motors up to and including 0.1kW.


■ TSB COM (standard type)

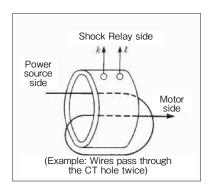
Power su		pply: AC20	0/ 220V	Power supply: AC400/ 440V		
Motors (kW)	Motor rated	Connectin	g terminal	Motor rated	Connectin	g terminal
(K**)	current (A)	Motor side	Shock Relay side	current (A)	Motor side	Shock Relay side
0.2	1.75	K-L ₂	k-l1	0.75	K-L ₂	l1-l2
0.4	2.5	K-L ₂	k-l2	1.5	K-L ₂	l2-l3
0.75	4.0	K-L ₂	k-l3	2.0	L1-L2	l2-l3
1.5	7.0	K-L ₁	k-l1	3.3	L1-L2	k-l2
2.2	10.0	K-L ₁	k-l2	5.3	L1-L2	k-l3
3.7	16.0	K-L ₁	k-l3	9.0	K-L ₁	l1-l3

Note: Common type CT, motor side L1-L2; Shock Relay side $\ell 1\text{-}\ell 2$ combination, 1A output CT can be combined.

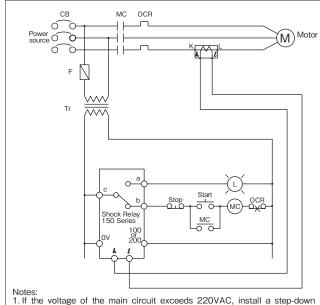
■ TSB COM-A (small capacity type)

Motor rated	Connecting terminal			
current (A)	Motor side	Shock Relay side		
0.15	K-L ₂	k-6		
0.25	K-L ₂	k-6		
0.4	K-L ₂	k-€		
0.6	K-L ₁	k-€		
1.0	K-L ₁	k-6		
1.6	K-L ₁	k-&		

Note: Select by current value


■ Through-type CT for motors 5.5kW and above

· Select a CT size applicable to motor capacity.

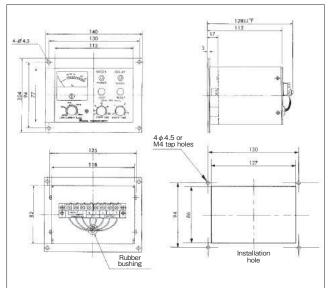

A A = 4 =	Power su	pply: AC20	0/ 220V	Power supply: AC400/440V		
Motor (kW)	1.4		Number of wires that pass through the CT hole (T)	Motor rated current (A)	CT size	Number of wires that pass through the CT hole (T)
5.5	25	100AT	4	14	100AT	7
7.5	30	120AT	4	20	100AT	5
11	50	100AT	2	25	100AT	4
15	60	120AT	2	30	120AT	4
19	75	150AT	2	37	150AT	4
22	100	100AT	1	50	100AT	2
30	120	120AT	1	60	120AT	2
37	150	150AT	1	75	150AT	2
45	170	200AT	1	85	100AT	1
55	200	200AT	1	100	100AT	1
75	250 250AT		1	130	150AT	1
90	300	300AT	1	150	150AT	1

In the case the single-phase motor or motor capacity is not on the selection chart, use the following calculation to make your selection:

CT size ≥ motor rated current x number of wire(s) passing through the CT hole

Basic connection diagram

- Notes:


 1. If the voltage of the main circuit exceeds 220VAC, install a step-down transformer Tr. As well, do not improperly wire the power source wires (AC100V or AC200V).

 2. If the CT's secondary side is left open while the primary side is energized, it will cause damage to the CT. When the Shock Relay is not connected, short-circuit the CT's secondary side.

 3. Coil capacity of the electromagnetic contactor MC which TSB150 output contact opens and closes should be less than 200VA when throwing, and less than 200VA when holding..

Special models and additional specifications

■ TSB151P, TSB152P (panel mounted type) outline dimensions

■ Notes on CT (current transformer) selection

The load current meter of the Shock Relay shows 100% at the time of the motor rated current value in the chart.

When the actual motor rated current value is not on the chart, use a CT on which the load current meter shows an 80 to 100% range when rated current flows.

Shock Relay SS Series

Features

Output relay self-holding type

Output relay return type when detecting over-current (fail-safe)

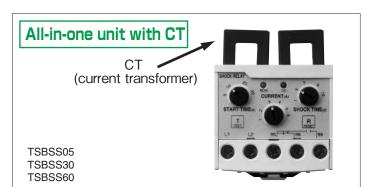
Economically priced

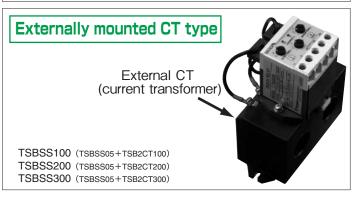
Broad current setting range

High repeating accuracy

Includes TEST/ RESET buttons

All-in-one unit with CT (current transformer)


Special model for the conformance to UL/cUL standards


CE marking

DIN rail (35mm) mountable

Can be used with a single-phase motor

Special model for the conformance to CCC standards

TSRSS200

TSBSS300

TSRSS100

Standard Specifications

Iter	ns	Model No.	15B5505	18B8830	12B2290	12822100	15B55200	12B22300		
	Load current (c	urrent setting range)*3	0.5 to 5A	3 to 30A	5 to 60A	10 to 100A	20 to 200A	30 to 300A		
	Applicable	200V class	0.1 to 0.75kW	1.5 to 5.5kW	7.5 to 11kW	15 to 18.5kW	22 to 37kW	45 to 75kW		
	motor capacity	400V class	0.2 to 2.2kW	3.7 to 11kW	15 to 22kW	30 to 45kW	55 to 90kW	110 to 132kW		
_		Ambient temperature		−20°C to 60°C						
8	Work	Ambient humidity		45 to 85%RH; no condensation						
Common	environment	Vibration			Less than	5.9m/s ²				
		Altitude			Less than	2000m				
		Ambient atmosphere			No corrosiv	e gas, dust				
	Unit	model No.	TSBSS05	TSBSS30	TSBSS60	TSBSS05	TSBSS05	TSBSS05		
	Current setting accuracy					ull scale)				
	Set time	Start time*3			*4 0.2					
	range	Shock time*3			*5 0.2					
		supply voltage (L1 - L2)			AC100 to 24					
		otor circuit voltage			AC600V,					
	Current c	letection system			Two-phase					
		Self-holding		Includes self-holding						
	Output relay	Normal state		At start up there is a 0.5s delay, then the output relay excites When it trips or the power is shut off, the output relay is not excited						
		Abnormal case								
		Contact capacity		1c contact, AC240V 3A (in the case of a resistance load)						
÷		Minimum applicable load*2	DC10V, 10mA							
Main unit		Reset method		Pres		or cut the operation power				
· <u>i</u>	Output relay	Mechanical	10,000,000 times							
<	life-span '	Electrical			100,00					
	les	functions	Internal circuit and output relay operation check							
	Withstand	Between the circuit and case	AC2000V, 60Hz, 1 minute (power supply circuit and contact circuit)							
	voltage	Between contacts			AC1000V, 60					
	ı .	Between circuit		AC2000V, 6	OHz, 1 minute (powe		ontact circuit)			
		oss mass			0.2kg (not includ					
	Power _.	When AC110V When AC200V			2.7VA ((
	consumption				11.0VA	(1.2W)				
		ail mounting		*6×			×			
		JL•cUL CE		• x			×			
	F . I	CT Model No.				TCDOCTIOO	X	TCDOCTOOO		
5				Not needed		TSB2CT100 100A	TSB2CT200	TSB2CT300		
External CT		rimary current				TUUA	200A 5A	300A		
err		ted load		_			5VA			
莶	KC	Mass								
		Mass				0.5kg				

TSBSSA0

Notes: *1. During normal operation the output relay is ON, and when the Shock Relay operates it is OFF (refer to page 112).

- *2. When directly inputting output relay contact into the programmable controller (PLC), be aware that a minute electric current can cause contact failure.
- As for the input to PLC, it is recommended to drive the relay coil for minute current by relay signal of Shock Relay at first, then input this relay contact to PLC.

 *3. Current and time setting ranges can be set within the warranty range, but not the upper or lower level of setting volume.
- *4. Although the minimum value on the display is 5s, values smaller than 5s can be set with the dial.
- *5. Although the minimum value on the display is 1s, values smaller than 1s can be set with the dial.
- *6. Special model is available for the conformance to cUL and CCC standards.

Part Names and Functions

LOAD CURRENT volume (A)

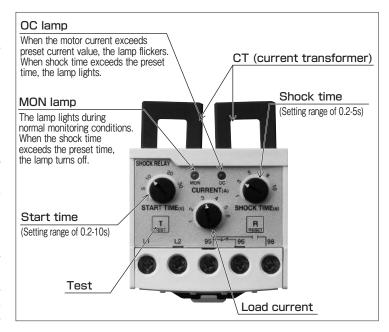
Load current can be set to stop the motor at the desired level when overload occurs. When the motor current exceeds the preset CURRENT value (at the same time, overload time continues to exceed the preset SHOCK TIME), the Shock Relay activates and stops the motor.

START TIME volume (s)

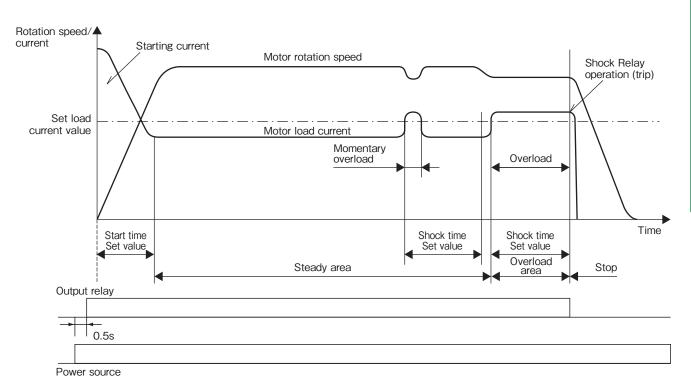
When the motor starts there is a possibility that the motor current will exceed the set current value. To prevent the Shock Relay from tripping due to the spike in start current, start time is set a little bit longer than the period of motor start up to ignore the spike.

TEST button

Shock Relay operation can be tested stand-alone or during motor operation.

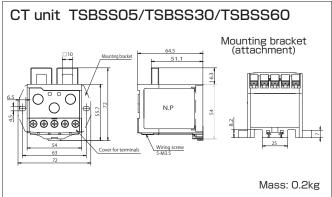

(When testing the Shock Relay, continue to press and hold the TEST button longer than the set START TIME or SHOCK TIME, whichever is longer.)

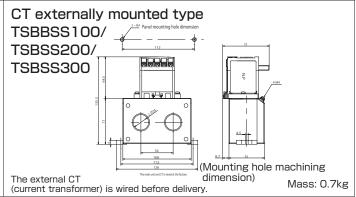
RESET button

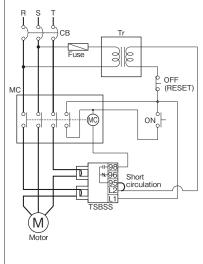

After the Shock Relay activates, the RESET button is used to cancel the self-holding of the output contact.

SHOCK TIME volume (s)

Shock time is the amount of time set until the Shock Relay will activate when overload occurs. Within the set time, the Shock Relay will not activate, even if it is overloaded.

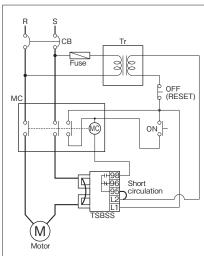



Operating Mode



Outline dimensions

Basic connection diagram


CB : Circuit breaker MC : Magnetic contactor

ON: Start switch
OFF: Stop switch
Fuse: Fuse
Tr: Transformer

Notes:

- Set the transformer depending on the voltage of the Shock Relay and MC. Set the insulation transformer if there is a high-harmonic noise generator such as an inverter.
- 2. When it's running normally, the contact points 95-98 of the TSBSS are "closed" (95-96 are "open"), and when tripping, 95-98 are "open" (95-96 are "closed"). Coil capacity of the electromagnetic contactor MC which output contact opens and closes should be less than 200VA when throwing, and less than 20VA when holding.
- Pass two wires out of three phases of the motor through the Shock Relay's CT in the same direction.

Single-phase motor reference schematic for when using the motor

Notes

- Set the transformer depending on the voltage of the Shock Relay and MC. Set the insulation transformer if there is a highharmonic noise generator such as an inverter.
- Nerrer.

 When it's running normally, the contact points 95-98 of the TSBSS are "closed" (95-96 are "open"), and when tripping, 95-98 are "open" (95-96 are "closed"). Coil capacity of the electromagnetic contactor MC which output contact opens and closes should be less than 20VA when throwing, and less than 20VA when holding.
- 3. Pass one phase through the Shock Relay's CT in the same direction.

As for the split-phase start and capacitor run motor, connect CT to the main coil side.

Notes on usage

- 1. During normal operation, the output relay is excited (ON). When overload is detected and the Shock Relay activates or the power supply is cut, the output relay is de-excited (OFF).
- Pass the motor wire(s) through the CT hole the number of times referenced in the chart below. In order to increase the current setting accuracy, the number of wires that pass through the CT hole is 2 times or more for small motor currents.

When the motor load factor is low, increase the number of wires that pass through the CT hole as necessary.

Furthermore, when the number of the wires that pass through the CT hole is more than 2, it is necessary to convert the current scale value of current volume.

(Ex.) When a wire passes two times through the CT, the value on the current scale should be at half value.

AC	AC200V class motor			AC400V class motor			
Capacity (kW)			Capacity (kW)	Shock Relay Model No.	No. of wires that pass through the CT hole		
0.1	TSBSS05	4	-	_	_		
0.2	TSBSS05	3	0.2	TSBSS05	4		
0.4	TSBSS05	2	0.4	TSBSS05	3		
0.75	TSBSS05	1	0.75	TSBSS05	2		
1.5	TSBSS30	3	1.5	TSBSS05	1		
2.2	TSBSS30	2	2.2	TSBSS05	1		
3.7	TSBSS30	1	3.7	TSBSS30	3		
5.5	TSBSS30	1	5.5	TSBSS30	2		
7.5	TSBSS60	1	7.5	TSBSS30	1		
11	TSBSS60	1	11	TSBSS30	1		
	_		15	TSBSS60	1		
_	_		18.5	TSBSS60	1		
		_	22	TSBSS60	1		

 Because products conforming to CE markings have been electro-magnetically tested for compatibility based on industrial environmental standards, they are not for household, commercial or light industrial use.

Model No.

CT Unit Type - External Mounted CT Type

Load current
(maximum current
setting)
SS Series
05...5A
30...30A
Shock Relay

60···60A 100···100A 200···200A 300···300A

Features

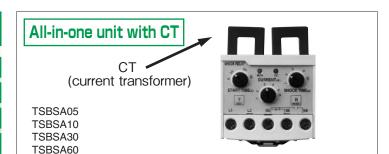
Output relay automatic return type

Output relay activating type when detecting over-current

Economically priced

Accurate current setting

High repeating accuracy


Test function

All-in-one unit with CT (current transformer)

DIN rail (35mm) mountable

Can be used with a single-phase motor

Special model for the conformance to CCC standards

Externally mounted CT type

External CT (current transformer)

TSBSA100 (TSBSA05+TSB2CT100) TSBSA200 (TSBSA05+TSB2CT200) TSBSA300 (TSBSA05+TSB2CT300)

Standard specifications

Fun	nction	Model	TSBSA05	TSBSA10	TSBSA30	TSBSA60	TSBSA100	TSBSA200	TSBSA300	
	Load current (c	urrent setting range)*3	0.5 to 5A	1 to 10A	3 to 30A	5 to 60A	10 to 100A	20 to 200A	30 to 300A	
	Motor	200V class	0.1 to 0.75kW	1.5 to 2.2kW	3.7 to 5.5kW	7.5 to 11kW	15 to 18.5kW	22 to 37kW	45 to 75kW	
_	capacity	400V class	0.2 to 2.2kW	3.7kW	5.5 to 11kW	15 to 22kW	30 to 45kW	55 to 90kW	110 to 132kW	
Common		Ambient temperature				-20°C to 60°C			•	
mo	Ambient humidity			45 to 85%RH: no condensation						
	Work environment	Vibration		Less than 5.9m/s ²						
	CHANGING	Altitude		Less than 2000m						
		Atmosphere			No	corrosive gas or o	dust			
	Uı	nit model	TSBSA05	TSBSA10	TSBSA30	TSBSA60	TSBSA05	TSBSA05	TSBSA05	
	Current	setting accuracy				\pm 10% (full-scale)				
	Time setting	Start time*3		*40.2						
	range	Shock time*3		*4 0.2 to 5s						
	Operation pov	ver source (A1-A2)			AC1	00 to 240V, 50/6	60Hz			
	Maximum motor circuit voltage				,	AC600V, 50/60H	z			
	Current detection system		2 phase CT system							
		Self-holding		No self-holding (automatically returns after 1s)						
i=	Output relay Normal state Abnormal case		Output relay is not excited							
Main Unit			Output relay is excited							
×	· [Contact capacity		0.2A AC250V $\cos\phi=0.4$						
		Minimum applicable load*2				DC10V, 10mA	, 10mA			
	Output relay life span	Mechanical				10,000,000 times	00 times			
	<u>'</u>	Electrical		100,000 times						
	Tes	t functions	Internal circuit and output relay operation verification							
	Withstand	Between the circuit and case		AC200	00V, 60Hz, 1 minu	ute (power supply	circuit and contac	t circuit)		
	voltage	Between contacts				1000V, 60Hz, 1 m				
		Between circuits		AC200		ute (power supply		t circuit)		
		Mass				y (excluding extern	al CT)			
	Power	When AC110V				2.7VA (0.35W)				
	consumption	When AC200V				11.0VA (1.2W)				
		ail mounting		0				×		
		CT Model No.		Not neede	d	TSB2	2CT100	TSB2CT200	TSB2CT300	
틸		rimary current		_		1	00A	200A	300A	
External		condary current						5A		
ă	Ro	ated load						5VA		
	Mass						0.5kg			

Notes: *1. The operation of the TSBSA Series is the complete opposite of the TSBSS Series.

- *2. When directly inputting output relay contact into the programmable controller (PLC), be aware that a minute electric current can cause contact failure. As for the input to PLC, it is recommended to drive the relay coil for minute current by relay signal of Shock Relay at first, then input this relay contact to PLC.

 *3. Current and time setting ranges can be set within the warranty range, but not the upper or lower level of setting volume.
- *4. Although the minimum value on the display is 1s, values smaller than 1s can be set with the dial. *5. Special model is available for the conformance to CCC standards.

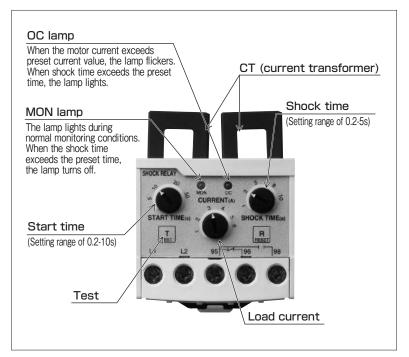
Part Names and Functions

LOAD CURRENT setting

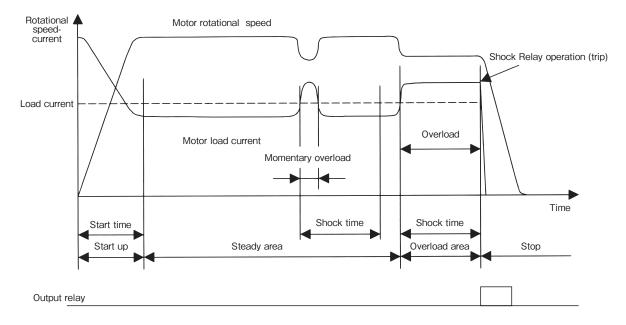
Load current can be set to stop the motor at the desired level when overload occurs. When the motor current exceeds the preset CURRENT value (at the same time, overload time continues to exceed the preset SHOCK TIME), the Shock Relay activates and stops the motor.

START TIME setting

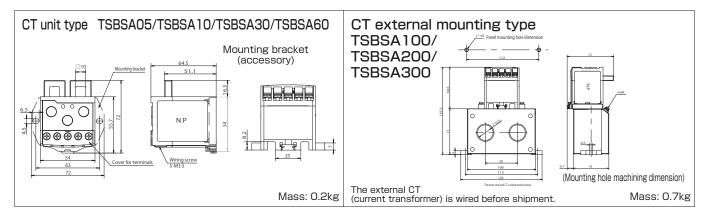
When the motor starts there is a possibility that the motor current will exceed the set current value. To prevent the Shock Relay from tripping due to the spike in start current, start time is set a little bit longer than the period of motor start up to ignore the spike.

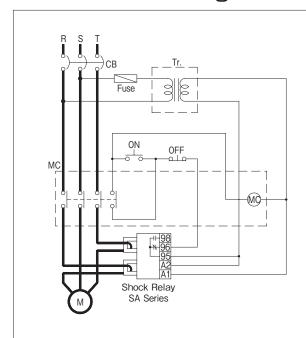

TEST function

Shock Relay operation can be tested stand-alone or during motor operation.


(When testing the Shock Relay, continue to press and hold the TEST button longer than the set START TIME or SHOCK TIME, whichever is longer.)

SHOCK TIME setting

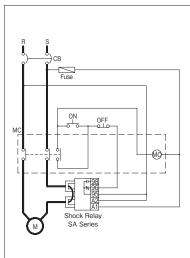

Shock time is the amount of time set until the Shock Relay will activate when overload occurs. Within the set time, the Shock Relay will not activate, even if it is overloaded.


Operating Mode

Outline dimensions

Basic connection diagram

CB : Circuit breaker
MC : Magnetic contactor
ON : Start switch
OFF : Stop switch


Fuse: Fuse

Tr : Step-down transformer/ Insulation transformer

Notes:

- Set the transformer depending on the voltage of the Shock Relay and MC.
 Set the insulation transformer if there is a high-harmonic noise generator such as an inverter.
- 2. The TSBSA contact output 95-98 are "open" during normal state (95-96 are "closed"), when tripping 95-98 are "closed" (95-96 are "open"). Coil capacity of the electromagnetic contactor MC which output contact opens and closes should be less than 200VA when throwing, and less than 20VA when holding.
- Two wires out of three phases of the motor are passed through the Shock Relay's CT in the same direction.

Single-phase reference connection diagram

Notes:

- Set the transformer depending on the voltage of the Shock Relay and MC.
 Set the insulation transformer if there is a high-harmonic noise generator such as an inverter.
- 2. The TSBSA contact output 95-98 are "open" during normal state (95-96 are "closed"), when tripping 95-98 are "closed" (95-96 are "open"). Coil capacity of the electromagnetic contactor MC which output contact opens and closes should be less than 200VA when throwing, and less than 20VA when holding.
- 1 phase of the motor is passed through the Shock Relay's CT in the same direction.

For when the split-phase or condensor start, connect the CT to the phase of the main coil side.

Model No.

Load current Maximum preset current value 05...5A 10...10A

Shock Relay 30...30A 60...60A 100...100A 200...200A

300...300A

Number of wire(s) that pass through the CT hole

Depending on motor capacity, use the chart on the right to select the applicable Shock Relay model and number of wire(s) to pass through the CT hole.

In order to increase the current setting accuracy, the number of wires that pass through the CT hole is 2 times or more for small motor currents.

When the motor load factor is low, increase the number of wires that pass through the CT hole as necessary.

Furthermore, when the number of the wires that pass through the CT hole is more than 2, it is necessary to convert the current scale value of current volume.

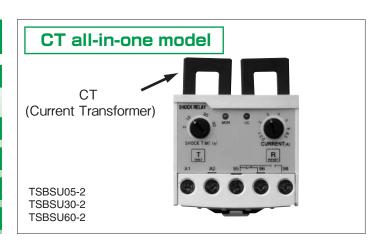
(Ex.) When a wire passes two times through the CT, the value on the current scale should be at half value.

AC200V class motor			AC400V class motor			
Capacity (kW)			Capacity (kW)	Shock Relay Model No.	No. of wires that pass through the CT hole	
0.1	TSBSA05	4	_	_	_	
0.2	TSBSA05	3	0.2	TSBSA05	4	
0.4	TSBSA05	2	0.4	TSBSA05	3	
0.75	TSBSA05	1	0.75	TSBSA05	2	
1.5	TSBSA10	1	1.5	TSBSA05	1	
2.2	TSBSA10	1	2.2	TSBSA05	1	
3.7	TSBSA30	1	3.7	TSBSA10	1	
5.5	TSBSA30	1	5.5	TSBSA30	1	
7.5	TSBSA60	1	7.5	TSBSA30	1	
11	TSBSA60	1	11	TSBSA30	1	
	_	_	15	TSBSA60	1	
_			18.5	TSBSA60	1	
_	_	_	22	TSBSA60	1	

Shock Relay SU Series

Features

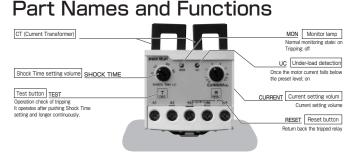
Under-load Detection Type

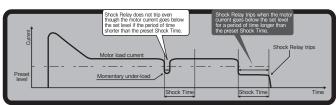

Once the motor current falls below the preset level, it can detect an under-load and send a signal to stop the motor.

Compact all-in-one CT (Current Transformer)

Includes Test and Reset buttons

DIN rail (35mm) mountable

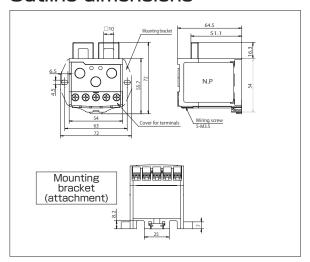

Can also be used with a single phase motor


Standard specifications

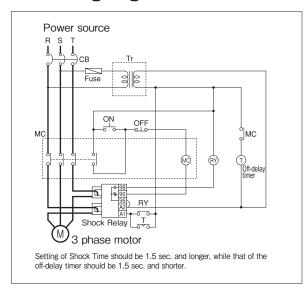
Model No.		TSBSU05-2	TSBSU30-2	TSBSU60-2		
	Current setting range *1,*2	0.5 to 5A	3 to 30A	5 to 60A		
	Shock Time setting range *1	0.2 to 30s				
	Current setting accuracy	±10% (full scale)				
Contro	ol power supply voltage (A1 – A2)		AC 200 to 240V±10% 50/60Hz			
Μ	laximum motor circuit voltage		AC 600V 50/60Hz *3			
	Current detection system		2 phase CT system			
Display	MON lamp	Norm	nal monitoring state: MON lamp (green)	is on		
Display	UC lamp	Det	ection of under current: UC lamp (red) is	on		
	Contact arrangement		1c			
	Contact rating		3A AC250V $\cos\phi=1$			
	Recommended amperes (in case of frequent operation)		0.2A and below AC250V $\cos\phi$ =0.4			
Output relay	Minimum application load *4		DC10V, 10mA			
	Operation	Relay is excited when tripping				
	Self-holding	Yes (refer to the diagram shown in the next page)				
	Life	100,000 times at contact rating load				
Reset method		RESET button: ON or Power source: off				
	Ambient temperature	−20 to 60°C				
	Storage temperature	−30 to 70°C				
Work environment	Humidity	45 to 85%RH; no condensation				
TTOIR CITTIONNICH	Altitude		2000m and below			
	Atmosphere	No corrosive gas	nor dust; Pollution degree 3 and below;	in the control box		
	Vibration		5.9m/s² and below			
Insulation resistance	Between case and circuit		$10 M\Omega$ and above (DC500V megger)			
Withstand	Between case and circuit		AC2000V 60Hz 1 min.			
voltage	Between contacts		AC1000V 60Hz 1 min.			
vollage	Between circuits		AC2000V 60Hz 1 min.			
Materials	Case		Polycarbonate, UL94V0			
Cover for terminals			Nylon 6			
	Power consumption		2VA and below			
	Mounting		35mm DIN rail or attached bracket			
Dimensions	Main unit (including CT)		Length 62 x width 54 x height 66mm			
Mass	Main unit (including CT)	0.2kg				

^{*1.} Current and Shock Time setting ranges are those which can be set, but do not show the upper or lower limits of the setting volume.

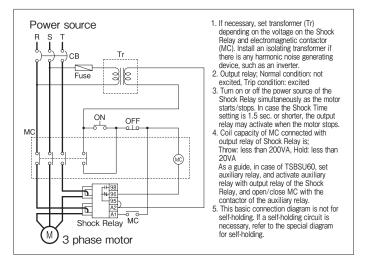
Operating mode

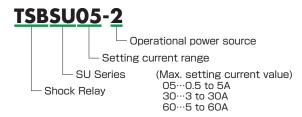


^{*2.}In the case that the current, at normal state, exceeds the setting range, each model can allow up to 100A respectively.


^{*3.}In the case of an inverter drive, there is a possibility of malfunction due to the distortion of the current waveform. If the frequency is within the range of 30 to 60Hz, it can be used because the influence is minor.

*4.Be sure to input minute electric currents through the relay when inputting an output relay contact directly into the PLC (Programmable logic controller), because there is a risk of contact failure due to minute electric current.


Outline dimensions


Self-holding diagram for reference

Basic connection diagram

Model No.

Number of wire(s) that pass through the CT (Current Transformer) hole

Pass the motor wire(s) through the CT hole the number of times referenced in the chart below. These numbers are rough indication of when the motor load factor is 80 to 100%. In case the motor load factor is low, increase the number of wires that pass through the CT hole as necessary to improve the setting accuracy. In case the motor is not listed below (small capacity, single phase, different voltage, etc.), select the model and number of wire(s) passing through the CT hole depending on the setting current.

	AC 200V class 3 phase motor			AC 400V class 3 phase motor			
Capacity Applicable (kW) Shock Relay Model No.		Number of wires that pass through the CT hole	Capacity (kW)	Applicable Shock Relay Model No.	Number of wires that pass through the CT hole		
0.1	TSBSU05-2	4	_	_	_		
0.2	TSBSU05-2	3	0.2	TSBSU05-2	4		
0.4	TSBSU05-2	2	0.4	TSBSU05-2	3		
0.75	TSBSU05-2	1	0.75	TSBSU05-2	2		
1.5	TSBSU30-2	3	1.5	TSBSU05-2	1		
2.2	TSBSU30-2	2	2.2	TSBSU05-2	1		
3.7	TSBSU30-2	1	3.7	TSBSU30-2	3		
5.5	TSBSU30-2	1	5.5	TSBSU30-2	2		
7.5	TSBSU60-2	1	7.5	TSBSU30-2	1		
11	TSBSU60-2	1	11	TSBSU30-2	1		
_	_	_	15	TSBSU60-2	1		
_	_	_	18.5	TSBSU60-2	1		
_	_	_	22	TSBSU60-2	1		

Note 1) In case the number of the wires that pass through the CT hole is more than 2 times, it is necessary to convert the current scale value of CURRENT volume.

(Ex.) When a wire passes two times through the CT, the value on the CURRENT scale should be at half value.

⁽Ex.) When a wire passes two times through the CT, the value on the CURRENT scale should be at half value.

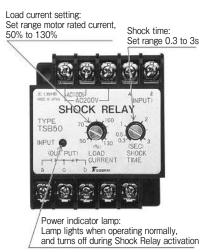
2) In case the motor capacity exceeds the above motor capacity, use the external CT.

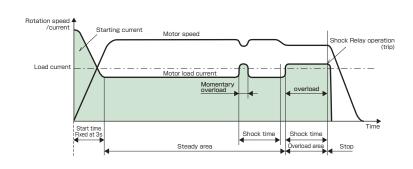
Shock Relay 50 Series

Features

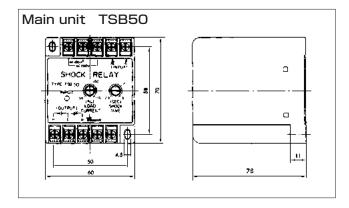
- 1. Economically priced
- 2. Automatic reset
- 3. Additional specifications available

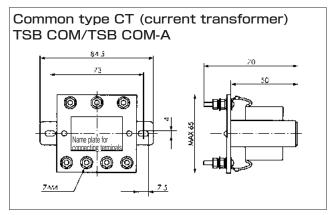
Standard specifications

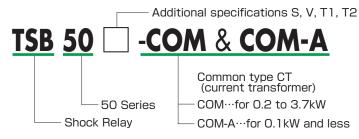

Fu	unction	Model	TSB50-COM		
		200V class	0.2 to 3.7kW ⁻¹		
	Motor	400V class	0.2 to 3.7kW		
- C		Ambient temperature	−10°C to 50°C		
Ě		Ambient humidity	45 to 85%RH: no condensation		
Common	Work environment	Vibration	Less than 5.9m/s ²		
		Altitude	Less than 1000m		
		Atmosphere	No corrosive gas, dust		
	Unit A	Model No.	TSB50		
	Load current (current setting range)*3		50 to 130% (100%=5mA)		
	Current se	tting accuracy	±10% (full-scale)		
	T' 11'	Start time	Fixed at 3s		
	Time setting range	Shock time	0.3 to 3s		
	Control power	er supply voltage	AC100/110V or AC200/220V 50/60Hz ±10%		
	Maximum motor circuit voltage		AC600V, 50/60Hz		
	Current detecting system		Single-phase CT system		
.=		Self-holding	No self-holding (automatic return)		
Main Unit		Normal operation	Output relay is not excited		
.⊑	Output relay	Abnormal case	Output relay is excited		
Š		Contact capacity	1s contact, AC250V 0.1A (inductive load $\cos\phi$ =0.4)		
		Minimum applicable load*2	DC10V, 10mA		
	Output relay life span	Mechanical	10,000,000 times		
	, , ,	Electrical	100,000 times		
	Test f	unctions	Not available		
		Space between circuit and housing	AC1500V, 60Hz, 1 minute (power supply circuit and contact circuit)		
	Withstand voltage	Contact spacing	AC500V, 60Hz, 1 minute		
		Circuit spacing	AC1500V, 60Hz, 1 minute (power supply circuit and contact circuit)		
		Mass	0.3kg (not including external CT)		
		consumption	0.5VA		
	Attached	External CT	TSB COM		
5	Rated pri	mary current	0.75A, 1.5A, 1.75A, 2.0A, 2.5A, 3.3A,		
la l	·	<u> </u>	4.0A, 5.3A, 7.0A, 9.0A, 10.0A, 16.0A		
External		ondary current	5mA		
ŭ		ed load	0.5VA		
	Mo	ass	0.5kg		


- 1. If TSBCOM-A (small capacity type CT) is used, it can be used for less than 0.1kW motors.

 2. When directly inputting output relay contact into the programmable controller (PLC), be aware that a minute electric current can cause contact failure. As for the input to PLC, it is recommended to drive the relay coil for minute current by relay signal of Shock Relay at first, then input this relay contact to PLC.
- 3. Current and time setting ranges can be set within the warranty range, but not the upper or lower level of setting volume.

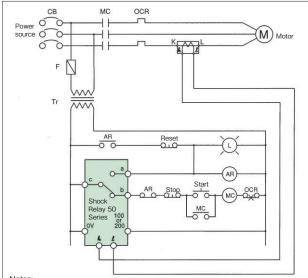

Part Names and Functions


Operating Mode



Outline dimensions

Model No.


Note) Use main unit with CT as a set.

CT (current transformer) Selection Notes

The load current meter of the Shock Relay shows 100% at the time of the motor rated current value in the chart.

When the actual motor rated current value is not on the chart, use a CT on which the load current meter shows 80% to 100% range when rated current flows.

Basic connection diagram

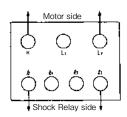
- When the main circuit's voltage exceeds 220VAC, install a step down transformer Tr. As well, take care not to make a mistake with the power source
- (AC100V or AC200V) wiring.

 2. If the CT's secondary side is left open while the primary side is energized, it will cause damage to the CT.
- When the Shock Relay is not connected, short-circuit the CT's secondary side. Coil capacity of the electromagnetic contactor MC which output contact open and closes should be less than 200VA when throwing, and less than 20VA

Common CT (current transformer)

- · TSB COM (standard type) can be used with a 0.2 to 3.7kW motor.
- · TSB COM-A (small capacity type) can be used with a 0.1kW and smaller motor.

■TSB COM (standard type)


	Motor vo	Motor voltage AC200/220V			Motor voltage AC400/440V			
Motor (kW)					Connectin	g terminal		
(KVV)	current (A)	Motor side	Shock Relay side	current (A)	Motor side	Shock Relay side		
0.2	1.75	K-L ₂	k-ℓ,	0.75	K-L ₂	ℓ_1 - ℓ_2		
0.4	2.5	K-L ₂	$k-\ell_2$	1.5	K-L ₂	ℓ_2 - ℓ_3		
0.75	4.0	K-L ₂	k - ℓ_3	2.0	L ₁ -L ₂	ℓ_2 - ℓ_3		
1.5	7.0	K-L,	k-ℓ,	3.3	L ₁ -L ₂	k - ℓ_2		
2.2	10.0	K-L,	k - ℓ_2	5.3	L ₁ -L ₂	$k-\ell_3$		
3.7	16.0	K-L ₁	k - ℓ_3	9.0	K-L ₁	ℓ_1 - ℓ_3		

Common type CT, motor side L₁-L₂; Shock Relay side ℓ_1 - ℓ_2 combination, 1A output CT can be combined.

■TSB COM-A (small capacity type)

Motor rated	Connecting terminal				
current (A)	Motor side	Shock Relay side			
0.15	K-L ₂	k-ℓ,			
0.25	K-L ₂	k-\(\ell_2\)			
0.4	K-L ₂	$k-\ell_3$			
0.6	K-L ₁	k-ℓ,			
1.0	K-L ₁	$k-\ell_2$			
1.6	K-L,	k-l,			

Select by current value

Additional specifications chart

Additional specs.	Subtropical specifications	Control power supply voltage modification	Start time modification	Shock time modification
Model	S	V	T1	T2
TSB50	0	0	0	0

Notes:

- 1. Refer to page 112 for detailed specifications.
- 2. Specify operational power source voltage for the Shock Relay in the case of additional specification V.
- 3. Specify required start time and shock time in the case of additional specifications T1 and T2.

O: Multiple specifications available

MEMO		

Control Devices

Mechanical Torque Keeper, MINI-KEEPER

Torque Keeper TFK Series - p143 to p153

MINI-KEEPER MK Series p155 to p159

Torque Keeper

Features

The friction facings of the slipping clutch and brake are made with special fine chemical fibers.

Long life

Special fine chemicals are used for friction facings, so much longer life can be expected when compared to other types of brake lining.

Slipping torque stability

Torque fluctuation is very small, so stable torque can be transmitted.

Constant torque repeatability

Even with high frequent repeated slippage, stable torque is transmitted consistently.

Light weight

Due to the aluminum AF flange, the Torque Keeper is light in weight.

Compact

Its special design makes for significant space savings. The Torque Keeper is more compact than other braking devices.

Wide torque range

Each size has a wide torque range.

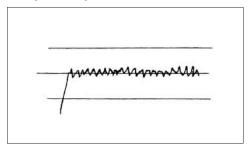
Easy torque setting

Torque indicators make torque setting easy.

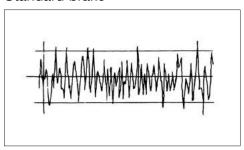
Ease of operation

Operation is easy due to the easy to use adjusting nut.

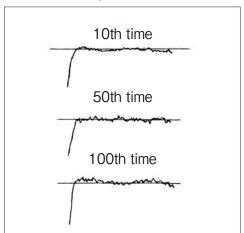
Greasing unnecessary


Grease and cooling are not needed.

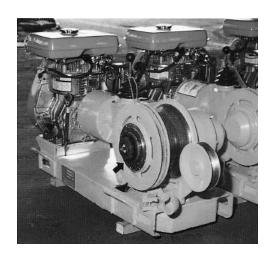
Quick finished bore delivery


Finished bores can be made for quick delivery. (Refer to page 159 for details)

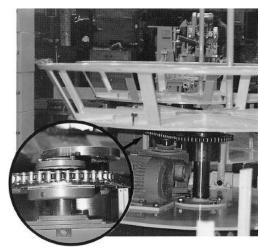
Torque Keeper



Standard brake

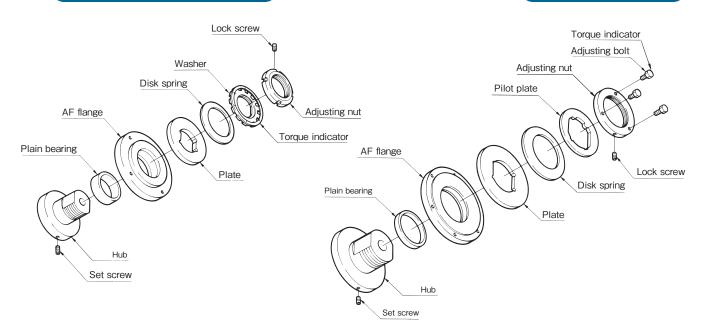

Compared to our ordinary products

Intermittent slip



Long life/ Stable/ Easy to operate!

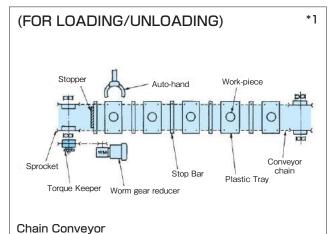
Our brakes have embarked on a new era of the fine chemical fiber. By using these fine chemical fibers, the TSUBAKI Torque Keeper can achieve a longer product life than that of the conventional type of brake lining. This brand new type of Torque Keeper brake has been designed with an abrasion resistance, the use of a torque indicator, weight savings and other aspects that make it easy to use. For the driving of each conveyor's accumulation and brakes for automatic machineries as well as others, we recommend TSUBAKI Torque Keeper for all industrial equipment brake mechanisms.



Construction

TFK20 · 25 · 35

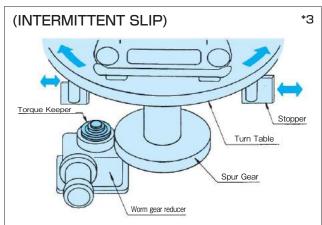
TFK50 • 70



Purpose and Machine Type Pallet Cart Conveyor Chain Conveyor *1 Accumulation Roller Conveyor *2 For stopping at correct position **Belt Conveyor** due to stable slipping feature of the Torque Keeper Turning Table *3 **Indexing Table** Paper Feeder **Printing Machine** Ink Roll -Transfer Machine Turnover Device Electronic Device -Table Lifter Intermittent Slip Lifting Equipment --Pallet Lifter Due to repetition -Tray Lifter of slipping and connecting. -Roll Feeder TORQUE KEEPER Press Machine driven side is Leveller held with stable torque. -Roll Feeder Wire Processing Machine Leveller **Textile Machine Braking Automatic Cart** Machine Tool Grinding Machine*4 Packaging Film Unwinder Automatic Packaging Machine -Adhesive Tape Winder Steel Cord Winder Wire Processing Continual Machine Tensioner Slip Braking unit for Film Machine **Tensioner** various types Spraying Machinery--Hose Winder of machines driven Office Machinery -Transcribe Ribbon Winder continuously. Winch Prevents Wires From Loosening Training Machine*5 **Exercise Machine** Fitness Machine **Bolt Tightener** Special-Use Machine--Nut Tightener Dragging -Valve Tightener *6 The Torque Keeper can apply Food Processing stable load to the machine. Cap Tightener Machinery Load Testing Equipment

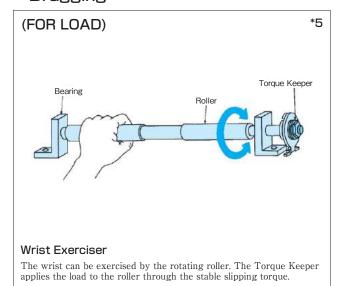
Note: Refer to page 146 for *1 to *6.

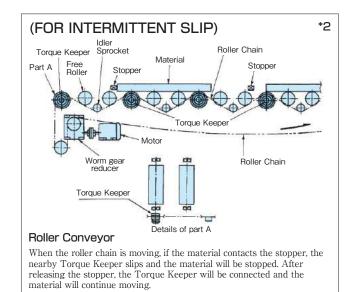
Applications

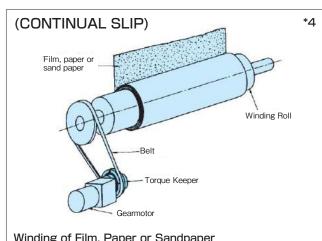

-Accumulation-

When the stop bar contacts the stopper, the Torque Keeper slips and

When the stopper is unset, the Torque Keeper connects and the conveyor resumes operation.

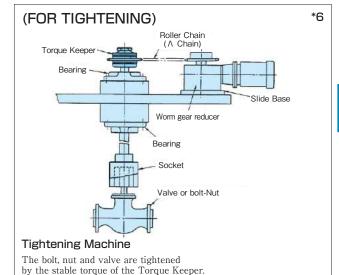

-Braking—



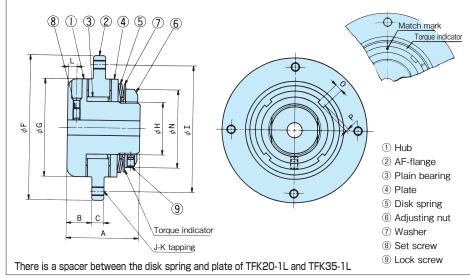

Turn Table for Parking System

At the parking station the car is rotated in the exit direction on the turn table. When the turn table comes to the correct position, it will be stopped by the stopper. The slipping of the Torque Keeper protects the drive unit from damage.

-Dragging—



Winding of Film, Paper or Sandpaper


The gear motor winds the film, paper or sand paper through the Torque Keeper. In this case, the Torque Keeper is slipping under low rpm, so it can apply stable tension.

TFK20·25·35

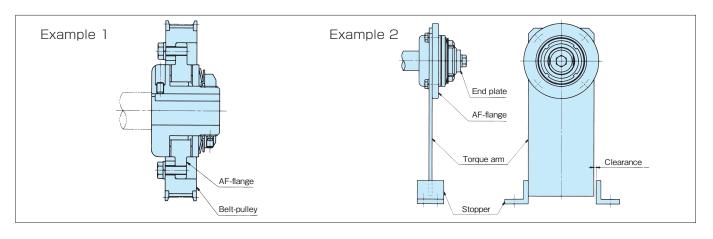
																		ι	Jnit : mm				
		Pough	Min	Max.		Dimensions																	
Model No.	Setting torque range N·m {kgf·m}	bore dia.		bore dia.	А	В	С	F (h7)	G	Н	I PCD	J-K Nodia.	L	N	0	Р	Adjusting nut dia.×pitch	Set screw	Weight kg				
TFK20-1L	0.59 to 1.18 {0.06 to 0.12}											4-M6	5	38			M24×1.0						
TFK20-1	1.76 to 5.88 {0.18 to 0.6}	7	9	14	37	13.3	7	84	50	24	70				5	2		M5 x 8	0.56				
TFK20-2	3.92 to 11.8 {0.4 to 1.2}																						
TFK25-1L	1.76 to 4.12 {0.18 to 0.42}	10																					
TFK25-1	3.92 to 16.7 {0.4 to 1.7}		14	22	48	16.8	8	96	65	5 35	84	84 4-M6	6 52	52	2 5	2	M35×1.5	M5 x 8	0.76				
TFK25-2	7.84 to 32.3 {0.8 to 3.3}																						
TFK35-1L	5.88 to 11.8 {0.6 to 1.2}	17	17																				
TFK35-1	11.8 to 44.1 {1.2 to 4.5}			17	17	17	19	25	62	19.8	8	120	89	42	108	4-M6	7	65	6	2.5	M42×1.5	M6 x 12	1.5
TFK35-2	20.6 to 89.2 {2.1 to 9.1}																						

Note: 1. All rough bore types are in stock.

2. An M5 lock screw is included.

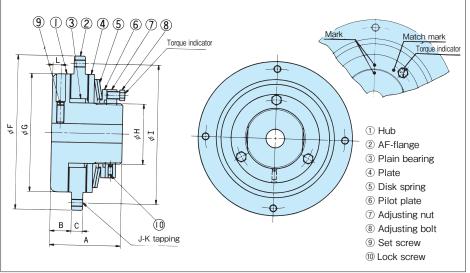
3. The weight are those of a product with the maximum shaft hole diameter.

Installation


1. When installing the belt-pulley, sprockets etc, fix the outside diameter (dimension F) of the AF-flange and spigot facing with a bolt tightly. (Example 1) The sprocket minimum number of teeth to be shown is on page 148.

The recommended tolerance of the spigot facing is H7 or H8.

2. When installing the torque arm, fix it to the AF flange with bolts tightly.


Also, the tip of the torque arm should be supported in the rotational direction only.

There should be sufficient free movement for axial direction. (Example 2)

TFK50.70

																	Ur	nit : mm
		Setting torque range	Rough-	Min.	Max.	Dimensions x.							Weight					
Model No.	N·m {kgf·m}	bore dia.	bore dia.	bore dia.	А	В	С	F (h7)	G	Н	I PCD	J-K Nodia.	L	Adjusting nut dia.×pitch	Adjusting bolt dia. X pitch		kg	
ı	TFK50-1L	11.8 to 29.4 {1.2 to 3.0}	20															
	TFK50-1	28.4 to 125 {2.9 to 12.8}		20 22	22	42	76	22.8	.8 12	166	127	65	150	150 4-M8	9	M65×1.5	M8×1	M8 x 20
	TFK50-2	52.9 to 252 {5.4 to 25.7}																
	TFK70-1L	29.4 to 70.6 {3.0 to 7.2}																
	TFK70-1	69.6 to 341 {7.1 to 34.8}		64	98	24.8	12	216	178	95	200	6-M8	10	M95×1.5	M10×1.25	M10 x 20	9.4	
	TFK70-2	134 to 650 {13.7 to 66.3}																

Note: 1. All rough bore types are in stock. 2. An M5 lock screw is included.

3. The weight is that of one with the maximum bore diameter.

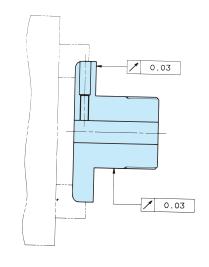
Minimum number of sprocket teeth

Madal Na		Sprocket RS35 RS40 RS50 RS60 RS80 RS100 RS120									
Model.No	RS35	RS40	RS50	RS60	RS80	RS100	RS120				
TFK20	32	25									
TFK25	35	28	23	20	16						
TFK35		△ 33 (34)	28	24	19	16	14				
TFK50		45	△ 37 (38)	△ 31 (32)	24	20	18				
TFK70			△ 47 (48)	△ 39 (40)	△ 31 (32)	25	22				

Note: 1.The roller chain which does not require lubricating oil is recommended.

2. \triangle denotes non-standard A-type sprocket needs a space.In case of using standard sprockets, please use the sprocket in ().

Model No.


TFK35-1-25J-2.5

Size Set torque No. of disk springs-(Unit: kgf·m, No symbol if there is no torque setting) 1...1nc 2...2pcs -Keyway type (J: New JIS normal type, E: Old JIS 2nd grade , No symbol: special keyway) 1L...weak spring Bore diameter -

(No symbol if there is no finished bore)

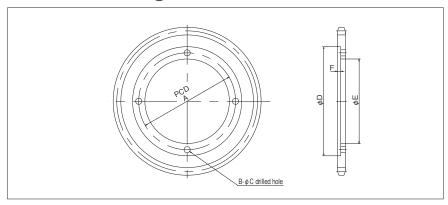
Bore Finishing

When bore finishing, chuck the outside diameter of the hub as per the following instructions and align the centering. If the centering is bad, there is a possibility of not stable slipping torque due to abnormal run out of friction facing.

The finished bore Torque Keeper TFK

Finished bore products can be made for quick delivery

■ Finished bore and keyway

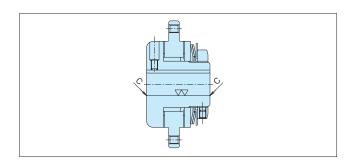

The finished bores of TFK20 to TFK70 have been standardized

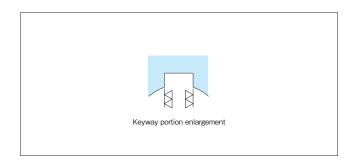
■ Finished bore sizes chart

Unit: mm

Torque Keeper Model No.	Finished bore size
TFK20-1L	
TFK20-1	9,10,11,12,14
TFK20-2	
TFK25-1L	
TFK25-1	14,15,16,17,18,19,20,22
TFK25-2	
TFK35-1L	
TFK35-1	19,20,22,24,25
TFK35-2	
TFK50-1L	
TFK50-1	22,24,25,28,29,30,32,33, 35,36,38,40,42
TFK50-2	00,00,00,40,42
TFK70-1L	
TFK70-1	32,33,35,36,38,40,42,43,45,46, 48,50,52,55,56,57,60,63
TFK70-2	-0,00,02,00,00,01,00,00
Delivery	ExJapan 4weeks by sea

■ Recommended dimensions for drive member processing When manufacturing a drive member, refer to the drawing below.




Series name	Recommended sprocket finishing dimensions								
	А	В	С	D (H7)	Е	F			
TFK20	70	4	6.6	84	52	*3			
TFK25	84	4	6.6	96	68	*3			
TFK35	108	4	6.6	120	92	4			
TFK50	150	4	9.0	166	130	5			
TFK70	200	6	9.0	216	182	5			

^{*}F = 2 when using RS35.

Model No.

■ Chamfer and finish

Shaft bore diameter	Chamfering size
ϕ 25 and less	C0.5
ϕ 50 and less	C1
Above ϕ 51	C1.5

Shaft bore diameter and keyway specifications

- \cdot Shaft bore diameter tolerance is H7
- \cdot The keyway is new JIS (JIS B 1301-1996) "normal type"
- \cdot Set screws come delivered with the product

Selection

When using the Torque Keeper with a human transport device or a lifting device, install a suitable protection device on that equipment for safety purposes.

Otherwise an accident resulting in death, serious injury or damage to the equipment may occur due to a falling accident.

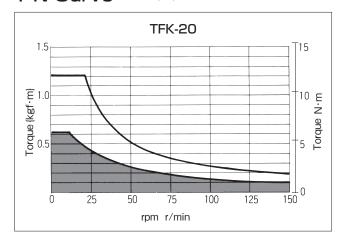
1. Decide the conditions from the table below in accordance with your application (see page 145). Determine the size from the T-N curve graphs on the next page.

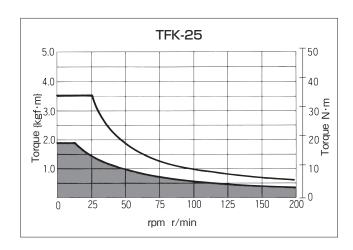
Application	Conditions	Size
Accumulation	Determine the following for the Torque Keeper of each conveyor: ① Slip torque ② Slip rpm ③ Slip time (conveyor stop time) ④ Connection time (conveyor drive time) ⑤ Operating time per day	Determine a size for which the slip torque and rpm is within the allowable range (below the curve) on the T-N curve graph. When the slip time is longer than the connection time, and the operating time per day exceeds eight hours, we recommend that it be operated within the area of the T-N curve graph.
Braking	Determine the following for the Torque Keeper of each machine: ① Brake torque ② Rpm ③ Slip time (brake operating time) ④ Connection time (time when brake not operated) ⑤ Operating time per day Note: Items ③ and ④ are not necessary in case of continual slipping.	Determine a size for which the brake torque and rpm is within the allowable range (below the curve) on the T-N curve graph. When the slip time is longer than the connection time, and the operating time per day exceeds eight hours, we recommend that it be operated within the area of the T-N curve graph.
Dragging	Determine the following for the Torque Keeper of each machine: ① Slip torque ② Slip rpm ③ Slip time ④ Connection time ⑤ Operating time per day	Determine a size for which the slip torque and rpm is within the allowable range (below the curve) on the T-N curve graph. When the slip time is longer than the connection time, and the operating time per day exceeds eight hours, we recommend that it be operated within the area of the T-N curve graph.

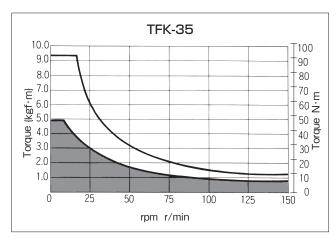
- 2. Verify that the shaft bore range of the chosen Torque Keeper conforms with the shaft diameter to be installed.
- 3. Setting the slip torque:

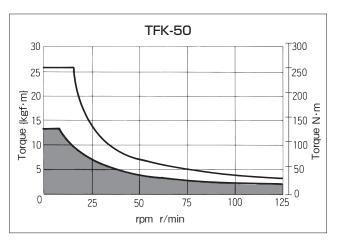
Each Torque Keeper is set at a value that is 50% of the maximum set torque range (see pages 147, 148). The torque curve will be included with the unit when it is delivered. This 50% torque is called the "zero point" and it is the basis for setting the slip torque.

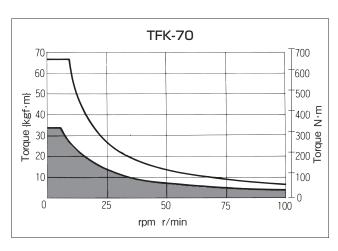
For details, see the section, "Handling Part 2" on page 152.


Points of caution regarding selection


- 1. Do not allow water or oil to get onto the friction surface. This will cause the torque to drop and unstable slip torque will result.
- 2. The T-N curve graph is intended for use when the ambient temperature is below 40° C. Please contact TEM when the ambient temperature is higher than this.
- 3. Please contact TEM when the slip torque for the shaft diameter to be used is smaller than the setting torque range of the Torque Keeper.
- 4. Reversing the direction of rotation will cause backlash. Torque Keeper cannot be used with machines that do not allow backlash.




T-N Curve


{ } for reference

Note: The T-N curve graph is based on the allowable temperature range of the Torque Keeper. If a more stable slipping torque is necessary, we recommend that it be operated within the area.

However, be aware that when the speed is 30 r/min or less, a stick-slip phenomenon may occur, which will cause unstable torque. A stick-slip phenomenon is a phenomenon in which a friction surface slips and stops repeatedly.

Handling Part 1

1. All Torque Keeper units are shipped with rough bores

Finish a shaft bore in the hub after disassembly. Refer to page 148 regarding shaft bore finish.

2. Be careful not to mix up parts when disassembling two or more Torque Keepers. When assembling, be sure to use the original parts. If parts are mixed up, the slip torque will not match the torque curve delivered with the unit.

3. Be sure that any toothed belts or roller chains, etc., are not over-tensioned when using the Torque Keeper. Unstable slip torque will result if more than the required tension is applied.

Handling Part 2

Each Torque Keeper is set at a value that is 50% of the maximum set torque range (see pages 147, 148). The torque curve will be included with the unit when it is delivered. This 50% torque is called the "zero point" and it is the basis for setting the slip torque.

To set the slip torque of TFK 20, 25 and 35, tighten the adjustment nut with a hook spanner wrench. To set the slip torque of TFK 50 and 70, tighten the three adjustment bolts with a wrench. Refer to page 153 to determine the zero point.

Setting the slip torque

TFK 20, 25 and 35

(1) When the required slip torque is over the zero point, tighten the adjustment nut to the angle required in accordance with the attached torque curve. This operation is facilitated by the torque indicator (which shows the angle) and match marks.

(2) When the required slip torque is below the zero point, loosen the adjustment nut beyond the point required and then tighten it to the desired angle, in accordance with the attached torque curve.

Example: Set to a slip torque - 30° from the zero point.

- ① Loosen the adjustment nut to -60° from the zero point.
- ② Tighten the adjustment nut from -60° to -30°

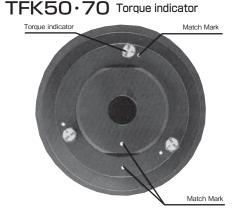
TFK 50 and 70

(1) When the required slip torque is over the zero point, tighten the three adjustment bolts to the angle required in accordance with the attached torque curve. This operation is facilitated by the torque indicator (which shows the angle) and match marks.

(2) When the required slip torque is below the zero point, loosen the three adjustment bolts beyond the point required and then tighten them to the desired angle, in accordance with the attached torque curve.

Example: Set to a slip torque - 60° from the zero point.

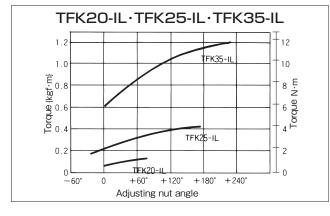
- ① Loosen the adjustment bolts to 90° from the zero point.
- ② Tighten the adjustment bolts from -90° to -60°

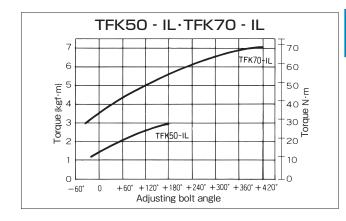

(Caution) When initially setting the Torque Keeper or when changing the setting during operation, we recommend running the machine for two or three minutes to run in before normal operation. This will allow you to obtain a more stable slip torque. Break-in as follows in accordance with the slip torque setting.

(1) When the slip torque is below the zero point:

- ① Run in the machine at zero point torque for two to three minutes.
- ② Set the slip torque as explained above and then enter normal operation.

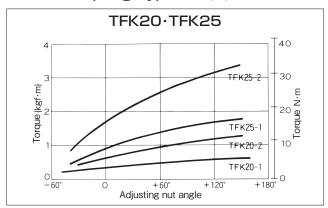
TFK20.25.35 Torque indicator

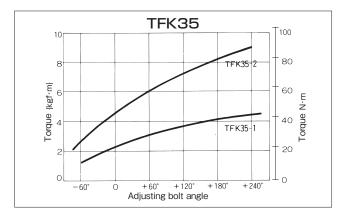

Match Mark



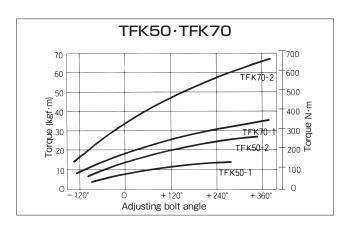
(2) When the slip torque is above the zero point:

- ① Set the slip torque as explained above.
- ② Run in the machine for two to three minutes.
- 3 Return the adjustment nut or bolts to the zero point.
- 4 Set the slip torque again and then begin normal operation.


Torque Curve Weak Spring Type



Torque Curve

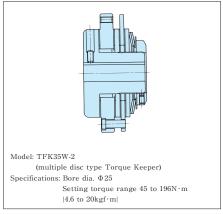

Standard Spring Type { } for reference

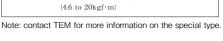
Note: 1. Indicator 0 on torque curve shows 50% of maximum

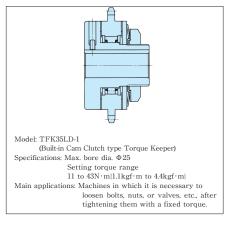
2. Each torque curve is an example. Refer to the attached torque curve of the actual unit.

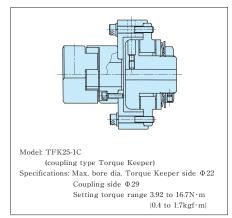
Finding the zero point

After finishing the shaft bore and re-assembling the unit, determine the zero point as explained below:


TFK 20, 25 and 35


- 1. During re-assembly, match the "0" on the torque indicator with the position of the set screw on the hub (part ® on page 147). (Do not allow it to be positioned 180° in the opposite direction.)
- 2. Hand-tighten the adjustment nut and then use a hook spanner wrench to further tighten it until the match mark reaches the "0" position on the torque indicator.


TFK 50 and 70


- 1. Tighten the adjustment nut and align it with the match mark on the hub.
- 2. Hand-tighten the bolts and then use a wrench to further tighten them until the "0"position on the indicators align with the match marks.

Special Type Torque Keeper

Lock screw/tightening torque

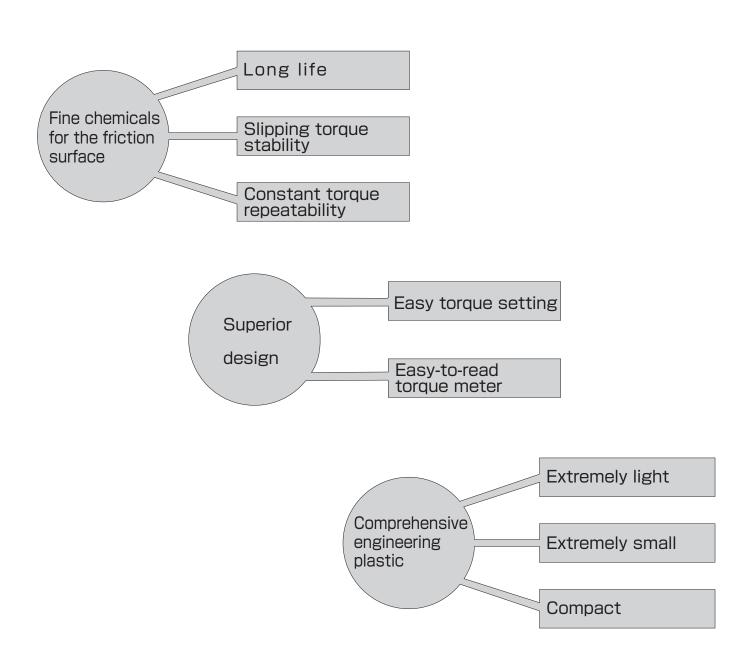
Hexagon socket head screw	Tightening torque N·m{kgf·cm}
M5	3.8 {38.7}
M8	16 {163}

Precautions:

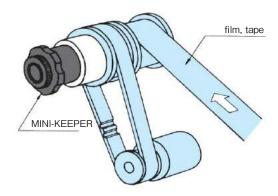
When re-tightening the lock screws that are once removed, make sure to take the following precautions:

- 1. Confirm that the plug tip has not been removed. If a lock screw is used with a tipless plug, the hub's thread may be damaged or the hub's pocket may get jammed.
- 2. Confirm that the plug's tip has not been heavily damaged. If a lock screw is used with a heavily damaged plug tip, the hub's thread may be damaged.
- *If 1. or 2. is found to be the case, exchange the damaged parts with new ones.

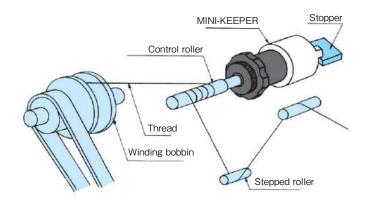
MEMO		


MINI-KEEPER

Features


Highly accurate, light and super-compact slipping clutch and brake

The TSUBAKI MINI-KEEPER is a super-compact slipping clutch and brake, constructed from fine chemicals and engineering plastic. With the MINI-KEEPER we have achieved supreme levels of lightness, compactness, and accuracy among similar devices. The MINI-KEEPER is ideal for braking, accumulating, and dragging applications in OA equipment and precision machinery.



Applications

The MINI-KEEPER slips and maintains constant tension on the tape (or film, etc.). It is ideal for braking in the winding and unwinding.

The MINI-KEEPER is installed on the tension controller in previous stage of the winding roll. It provides stable slip torque and maintains stable tension on the thread.

<Other potential applications>

Thermal printer

Paper feeder

Plotter

Copier

Textile machine

Wire cutter

Film processing equipment

Accumulation conveyor

Automatic packaging machine

Coil winding machine

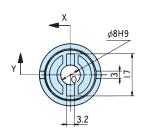
Labeler

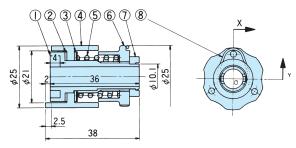
Barcode printer

Electronic device manufacturing equipment

Various robots

Ribbon printer


Facsimile



Dimensions

MK08

Cross section X-Q-Y

Setting torque range 1.96 to 9.80N·cm 0.2 to 1.0kgf·cm Maximum slip rpm

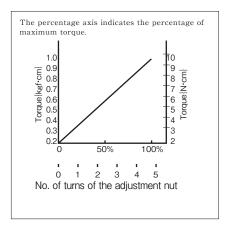
Refer to "T-N Curve" on the next page Mass: 18 g

① Hub

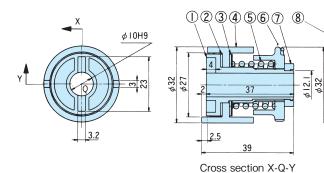
② Friction facing A

③ Friction facing B

4 Flange

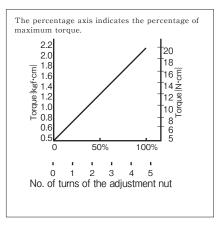

(5) Coil spring

⑥ Adjustment nut

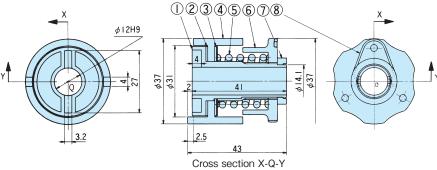

7 Stop collar

Anti-rotation clip

Torque Curves



MK10



Setting torque range 4.90 to 19.6N·cm {0.5 to 2.0kgf·cm} Maximum slip rpm Refer to "T-N Curve" on the next page Mass: 30 g

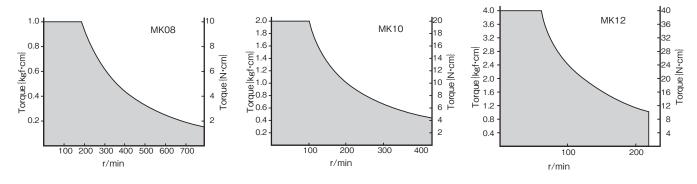
- ① Hub
- ② Friction facing A
- ③ Friction facing B
- 4 Flange
- (5) Coil spring
- ⑥ Adjustment nut
- 7 Stop collar
- Anti-rotation clip

MK12

Note: All models are in stock.

Setting torque range 10.8 to 39.2N·cm {1.1 to 4.0kgf·cm} Maximum slip rpm Refer to "T-N Curve" on the next page Mass: 46 g

- ① Hub
- 2 Friction facing A
- ③ Friction facing B
- 4 Flange
- (5) Coil spring
- 6 Adjustment nut
- 7 Stop collar Anti-rotation clip
- The percentage axis indicates the percentage of maximum torque. Torque {kgf·cm} 3 2 20 50% 100% 3 No. of turns of the adjustment nut

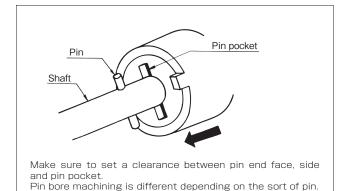

Selection

When using the MINI-KEEPER with a human transport device or a lifting device, install a suitable protection device on that equipment for safety purposes. Otherwise an accident resulting in death, serious injury or damage to the equipment may occur due to human disaster and an accidental falling.

Choose set torque and slip rpm from the part of the T-N curve graphs below.

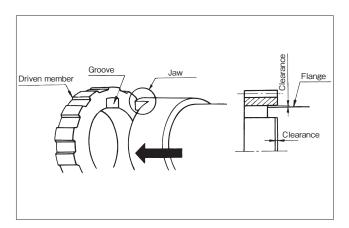
- * The T-N curve graph displays the limit value reached by heat generation during continual slip. When the slip time per one operation is short and the interval is long, it is possible to use the MINI-KEEPER in excess of the T-N value. In this case, please contact TEM for a consultation.
- * Contact TEM for non-standard specifications.
- * However, be aware that when the speed is 30 r/min or less, a stick-slip phenomenon may occur, which will cause unstable torque. A stick-slip phenomenon is a phenomenon in which a friction surface slips and stops repeatedly.

T-N Curve



The T-N curve is applied when the ambient temperature is 40° C or lower. Contact us for other cases.

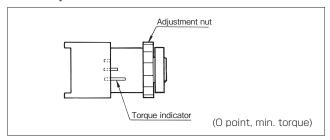
Handling


Installation onto a shaft

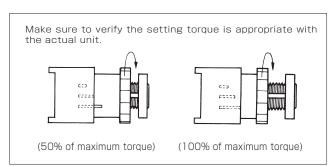
- 1. The MINI-KEEPER's shaft bore is already finished. We recommend a tolerance for the installation shaft dia of h7 or h8
- 2. Use the pin pocket (groove) on the end face of the hub to connect the MINI-KEEPER to the shaft. Insert the pin into the shaft, and then set them to the pin pocket as shown in the diagram below. The clearance should be about 0.5mm.

Installation onto a driven member

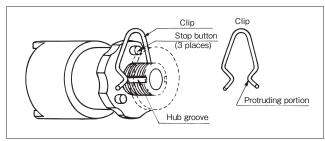
1. Use a jaw at flange to install the MINI-KEEPER onto a driven member (gear, pulley, etc.).



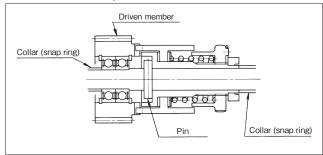
Cut a groove into the end face of the driven member, and slide the jaw into it. At this time, be sure to allow a clearance so that thrust and radial loads do not act on the flange end face including the jaw. The clearance should be about 0.5mm.



Torque setting


1. All MINI-KEEPERs are set at the zero point (minimum torque) before shipment. When in this condition, the scale above the periphery of the adjustment nut is as shown in the diagram below. Verify this.

2. Set the torque by tightening the adjustment nut. Refer to the torque curve on page 157. Use the torque indicator as a guide for the torque setting illustrated below.


3. After setting the torque, fix the adjustment nut to stop it from rotating. Do this by inserting the accessory clip for anti-rotating between the adjustment nut and the stop collar as shown below. Make sure to verify the protruding portion of the clip for anti-rotating is inserted at the hub groove (both sides). Anti-rotation is made by the clip for anti-rotating hitting the stop button (convex portion) of the adjustment nut.

Note: 1. If oil or water gets into the friction facings, it will result in abnormal torque and unstable slipping torque.

2. The standard highest operating ambient temperature for the MINI-KEEPER is 40℃ If this will be exceeded, contact TEM.

Installation example

Control Devices

Electrical

Shock Monitor

Fe	atures	p161	
Mo	del reference chart	p162	
	plication examples d basic operations of each	type	
	Shock Monitor TSM4000Type	p163	
	Shock Monitor TSM4000 Type/TSM4000H1 Type	p169	Safety Devices
	Shock Monitor TSM4000H2 Type	p170	
	Shock Monitor TSM4000M1 Type	p171	
	Shock Monitor TSM4000M2 Type	p172	
	Shock Monitor TSM4000C1 Type	p173	
Exte	ernal connection/parameter settings/	n174 t	to n178

Shock Monitor

(Industrial Property Right Patent No. 2796775 and others)

Features

The Shock Monitor is a power monitoring safety and control device that can detect even the minimal variations in load by monitoring input power.

Ideal for monitoring light loads

For a standard motor there are only minute current variations in the light load zone. For load monitoring of the device used in the light load zone, monitoring electric power variations in the proportional load is ideal.

2. Almost completely unaffected by source voltage variation

Even with a constant load, if the power supply fluctuates then current will fluctuate largely, thus making accurate load detection impossible. While the Shock Monitor is monitoring machine power it is almost completely unaffected by voltage fluctuation, so stable load detection is possible.

3. Can be used with a wide range of frequencies (5-120Hz)

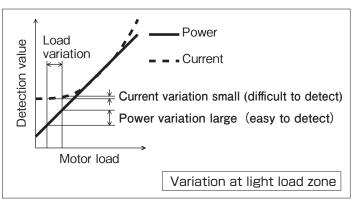
Can be used with an inverter and a servomotor drive. (The inverter's electronic thermal is for burnout protection. Not suitable for device protection.)

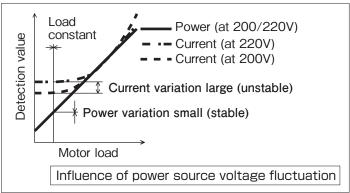
If the power source frequency exceeds 120Hz such as servo motor for machine tool main spindle, consult TEM.

4. Quick response

Input power is measured every 0.02s. Right after trouble happens, the signal is output in a minimum of 0.05s

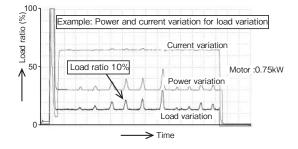
5. Load condition recording


The direct current voltage that is proportionate to motor input power is output, so the load condition can be recorded on the recorder.


TSM4000 Series
converted into 0 to 10V (basic type)
converted into 0 to 5V (optional)
converted into 4 to 20mA (optional)

6. CE compliancy possible

For details, contact TEM.



Example: Power and current variation for load variation

- (1) The power variation that is proportional to load variation is emerged.
- (2) From the chart below we can see that with a load variation of about 10%, there is almost no change in current, while power makes remarkable change.

Model reference chart

		Model No.	TSM4000	TSM4000H1	TSM4000H2	TSM4000M1	TSM4000M2	TSM4000C1			
Item	1		*1 *2 Basic type	*2 Economy type	Load following type	Contact detection type	Integral power type	Built-in forward/reverse sequencer type			
		Capacity	, .	, ,,	0 7.	110kW		, ,,			
App	olied	*3 Power source voltage	AC200/220V, AC400/440V								
mot	or	Frequency	5 to 120Hz								
Con	trol pow	er supply voltage	AC90 to 250V50/60Hz, DC90 to 250V Nonpolar								
	*3 M	otor voltage		AC250V, MAX							
Input	Cur	rent sensor		DC2.5V							
_	Сс	ntrol input	X1, X2, X3, IH, RST	X1, X2, RST	X1, RST	X1, X2, X3, X4, X5	X1, X2, X3, X4, X5	X1, X2			
	No	o. of contact	3с	2c	2c	3c	3с	2a, 1b, 1c			
put	Re	lay contact output	DC30\			tive load $\cos \phi = 0.4$) uctive load) Minimum l	oad applicable DC24\	/, 4mA			
Output	Outp	ut Mechanical			10,000,000	0 activations					
	relay	life Electrical									
	Analo	g output relay			DC0 t	to 10V					
	Load	Output 1	High1 - 200 to 200%	HIGH1 5 to 200%	HIGH1 1 to 99%	OUT1 1 to 99%	OUT1 0 to 99%	Overload 5 to 200%			
	settin	g Output 2	High2 - 200 to 200%	HIGH2 5 to 200%	HIGH2 5 to 200%	OUT2 1 to 99%	OUT2 5 to 200%	No load 5 to 200%			
n	leve	Output 3	Low - 99 to 99%			OUT3 5 to 200%	OUT3 5 to 200%				
Setting	Start ti	me setting range			0.1 to 20.0s			1 to 300s			
S	S	hock time			"MIN" or 0).1 to 10.0s					
	se	tting range	In case	In case motor power souce frequency is 50Hz and higher, shock time at "MIN" is approximately 50ms.							
	Reponse		Set by number of moving average								
	*4 ln	hibit function	Manual/auto switching	Autoinhibit Manual/auto switching							
	Rela	y self-holding		Self-hold/auto	reset selectable		Only OUT3 is selectable	Sequencer function			
Function	Switchi	ng detection level	8 steps	4 steps	None	8 s	teps	None			
Fu	Те	est function		Relay output test							
	F	Peak-hold	When the	e load ratio exceeds th	e pre-set level (or falls	below it), shows the mo	aximum value within sh	ock time.			
		function		Only when the output is set as self-hold, it is peak hold.							
		er display range	- 200 to 200%	- 200 to 200% 0 to 200%							
Display		e display range			0 to :	500V					
Öis		nt display range				o 999A					
	Frequer	ncy display range				120Hz					
		onsumption		10VA (Inrush current 5A within 5ms)							
	Approx	imate mass				Okg					
		Ambient temperature				50℃					
	Vork	Reative humidity			e is no condensation	1					
envii	ronment	Altitude Ambient				and less					
		atomosphere			No corrosi	ve gas, dust					

Note: *1. Basic type can monitor not only positive (plus) torque but also negative (minus) torque.

Marning

When using the Shock Monitor with a human transport device or a lifting device, install a suitable protection device on that equipment for safety purposes.

Otherwise an accident resulting in death, serious injury or damage to the equipment may occur due to a falling accident.

^{*2.} Basic type and Economy type can monitor power or torque.(Negative torque can not be monitored by the Economy type.) In case of torque monitoring, torque is calculated by the monitored power, and displayed. In this case, rated torque (100%) is that at 60Hz.

In case the frequency is 20Hz and below, errors become larger due to motor efficiency. In this case, use for power monitoring.

^{*3.} In case Shock Monitor is used at AC400/440V, a 400V class resister "TSM4-PR1" is necessary.

^{*4.} This is the function to stop the power monitoring of Shock Monitor. Basic, M1 and M2 types can inhibit manually, and between inhibit input terminal and CM are ON within setting time, or during ON, load ratio "0%" flashing and do not monitor power. In addition, if the frequency changes 4Hz/1s of motor voltage, monitoring is automatically stopped. (Auto inhibit)

Quickly detects small load changes

Shock Monitor TSM4000

Contributes to "visualization" in factories (option)

Combining a commercially available touch panel display and a shock monitor having an optional communication function makes it possible to display the current readout of the shock monitor and a trend graph of the readout on a remote display.

Also, you can change the parameters of the shock monitor through remote touch panel operations.

* For the details of the optional communication function, contact our customer service center listed on the back cover.

Features

Safety Design

The terminal block is equipped with a cover.

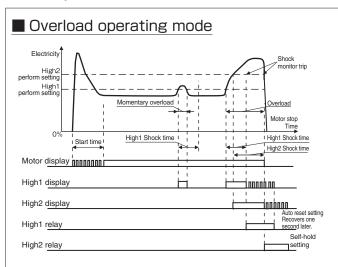
This structure prevents dust from entering the main unit.

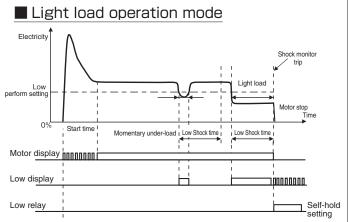
Analog output

A 0 to 10 V analog output is available as a standard feature (also, 0 to 5 V and 4 to 20 mA outputs are available as options), which enables actions and monitoring according to the load.

Environmental Consideration

The backlight automatically turns off, which contributes to the saving of energy.

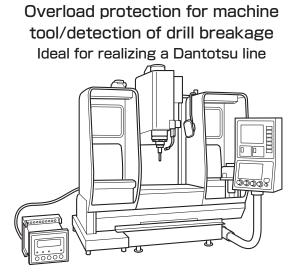

This product does not contain any RoHS restricted substances, so it is environmentally friendly.


Improved Handleability

The panel-mount style is standardized to make connection to the terminal block easy when mounting this product on a panel.

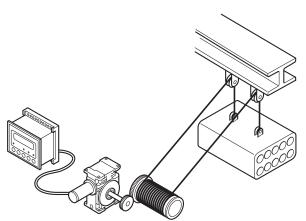
Also, this product can be mounted on DIN rails.

Basic operations of TSM4000



The counting of both the start time and the shock time begins when the motor starts. Therefore, the one set to a longer time is valid.

- 1) The TSM4000 compares the load with the preset overload detection level, and presents an external notification of load abnormality when an overload state (or a light load state) continues for a certain period of time (the shock time).
- 2) Two upper limit abnormality signals and one lower limit abnormality signal are available and can be used as prediction signals or motor stop signals.
- 3) To prevent false output due to acceleration, the load detection is canceled for a preset time (the start time) when starting the motor.
- 4) A torque monitoring function (20 to 120 Hz) is available, which is effective when an inverter is used. See Note) *2 on page 162.

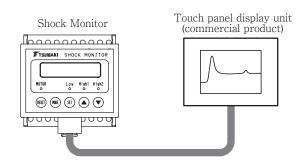

Usage examples

In a drilling process using a machine tool, the Shock Monitor reliably detects not only overload but also any breakage of the drill, preventing defective products from being produced during unattended operation.

Additionally, using a model which calculates integral power values enables detection of wear in the drill with high accuracy. Replacing the drill before breakage can prevent yield decreases.

Overload protection for a suspension/hoisting device

The Shock Monitor can be used with a hoisting device on a staging set or in a factory. When the load on the device exceeds the design load (allowable load), the drive system is stopped automatically to prevent accidents such as dropping.


The power detection method ensures highly accurate load detection even for high-reduction operation using a worm gear reducer in the drive unit.

Application examples of the optional communication function

The optionally available communication function enables the combination of the Shock Monitor and a commercially-available touch panel display unit to be used in the following ways:

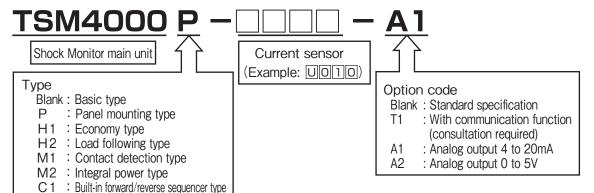
<Functions available with the display unit>

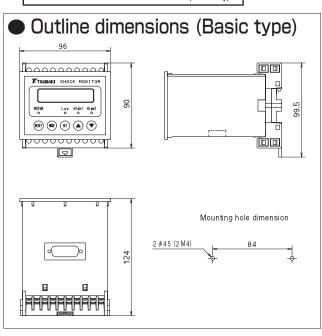
- Displaying of electrical power, current, and voltage data in graph form
- Saving of the above data and transferring the data into memory
- Reading/writing of setting values for a specified parameter

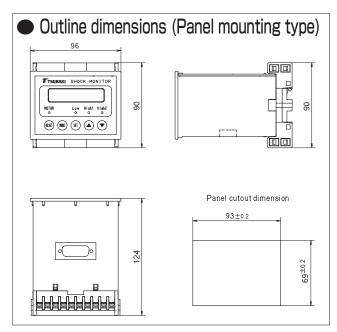
Communication specifications

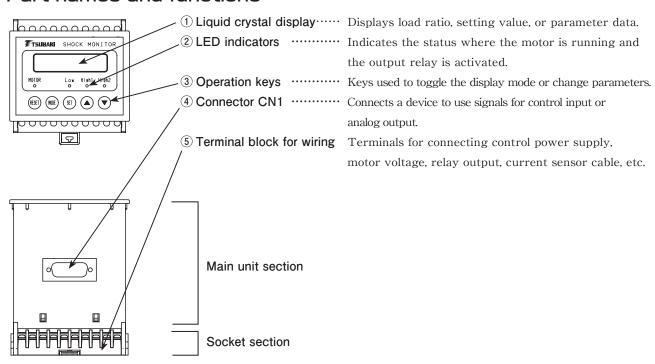
item	Brief specifications
Transmission standard	RS485
Communication method	Half-duplex, bidirectional, Modbus protocol
Transmission speed	Selectable from 2.4, 4.8, 9.6, 19.2, and 38.4kbps

<Usage>


- The production process can be monitored using real-time displays of power and current waveforms.
- Checking the waveform of abnormal events is effective in preventive measures or making improvements to guard against device damage.


For details, contact TEM.

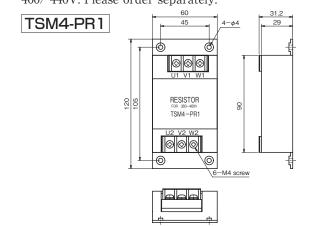



Model No.

Part names and functions

■ Current sensor (attachment)

The current sensor brings motor current into the Shock Monitor unit.


Select a model from the chart below depending on the motor capacity and voltage.

	AC 200/2	20V motor	AC 400/4	40V motor
Motor capacity (kW)	Sensor Model No.	Number of wires that pass through the CT hole	Sensor Model No.	Number of wires that pass through the CT hole
0.1	TSM-U010	6	TSM-U010	12
0.2	TSM-U010	3	TSM-U010	6
0.4	TSM-U010	2	TSM-U010	3
0.75	TSM-U050	6	TSM-U010	2
1.5	TSM-U050	3	TSM-U050	6
2.2	TSM-U050	2	TSM-U050	5
3.7	TSM-U050	1	TSM-U050	3
5.5	TSM-U050	1	TSM-U050	2
7.5	TSM-U100	1	TSM-U050	1
11	TSM-U100	1	TSM-U050	1
15	TSM-U150	1	TSM-U100	1
18.5	TSM-U150	1	TSM-U100	1
22	TSM-U200	1	TSM-U100	1
30	TSM-M300	1	TSM-U150	1
37	TSM-M300	1	TSM-U150	1
45	TSM-M400	1	TSM-U200	1
55	TSM-M600	1	TSM-M300	1
75	TSM-M600	1	TSM-M300	1
90	TSM-M800	1	TSM-M400	1
110	TSM-M800	1	TSM-M400	1

Sensor Model No. TSM-U010, TSM-U050, TSM-U100, TSM-U150, TSM-U200 Current direction indicator Installation holes: 2-φ4 -∞∤ ನ 37 5046-04AG 63 MOLEX 45 54 Sensor Model No. TSM-M300, TSM-M400, TSM-M600, TSM-M800 Installation holes 5046-04AG 40 78

■ 400V class resister

It is necessary in case the motor voltage is 400/440V. Please order separately.

Panel mounting bracket This bracket is used to secure the panel mounting type Shock Monitor. TSM4-PL1 Panel mounting hole dimension 1. Included 1. Included 1. Included 2. Screw lightening torque 2. Screw lightening torque 2. O. 12 to 0.16 N-m 3. Panel mounting to lightening to 1. See the figure on the right.

■ Sensor cable

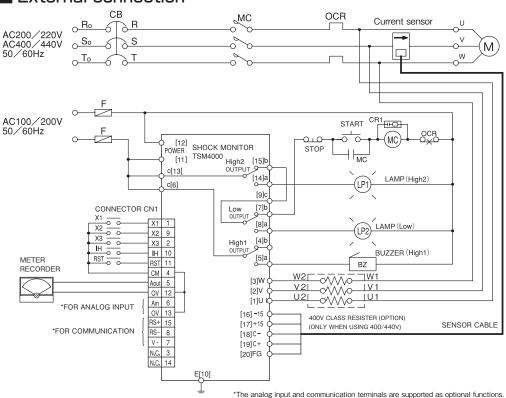
90

A 1 m length sensor cable (TSM4-S01) comes standard to connect the Shock Monitor and the current sensor. In case a different cable is required, order the cable with the connector below separately.

Model No.	Cable length (L)					
TSM4-S01 (attached)	1 m					
TSM4-S03	3m					
TSM4-S05	5m					
TSM4-S10	10m					
TSM4-S20	20m					
TSM4-S30	30m					
©20 L						

I/O cable

This cable is necessary when you want to perform process changeover from the outside, when resetting the shock monitor, and when connecting an external Model No. | Cable length (1)


meter. It should be ordered separately when necessary.

Model No.	Cable length (L)
TSM4-C01	1m
TSM4-C03	3m

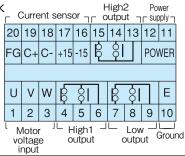
■ External connection

CB : Circuit breaker

: Fuse

MC : Electromagnetic contactor

for motor
OCR : Over current relay
CR1 : CR filter
START: Start button
STOP : Stop button


Operating electromagnetic coil capacity (magnetic capacity) of the electromagnetic contactor [MC] for motor should be less than 100VA when throwing, and less than 10VA when holding.

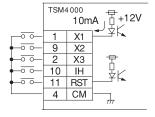
Note:

- Select the current sensor from the Current Sensor table based on motor capacity and voltage. Use the specified number of pass through and current direction.
- Make sure to insert the current sensor into the "phase V", and use sensor cable TSM-SXXN to connect with Shock Monitor.
- If using a 400/440V motor, use 400V class resister shown in dashed line.
- Connect motor voltage terminal of Shock Monitor U[1], V[2], W[3] with the phase of [U], [V], [W] respectively.
- Use relay for minute electric current for [X1], [X2], [X3], [IH], [RST].
- In case of a wrong connection, load can not be detected correctly and the Shock Monitor will not work properly.

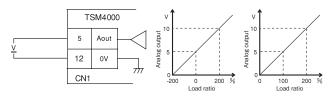
■ Terminal functions

· Terminal block

Name	Symbol	IN/ OUT	Pin No.	Explanation
Control power	POWER	IN	11	Connection of control
supply	POWER	IIN	12	power supply
Ground	E	_	10	Ground terminal
	- 15	OUT	16	
Current	+15	OUT	17	
	C –	IN	18	Sensor cable
sensor	C+	IN	19	
	FG	_	20	
Motor	U	IN	1	
	٧	IN	2	Motor voltage input terminal
voltage	W	IN	3	1.0
	b	OUT	7	Relay contact output
Low output	а	OUT	8	when the lower limit
обірої	С	OUT	9	output is activated
11:1-1	b	OUT	4	Relay contact output
High 1	а	OUT	5	when the higher limit 1
output	С	OUT	6	output is activated
⊔:b O	С	OUT	13	Relay contact output
High2	а	OUT	14	when the higher limit 2
output	b	OUT	15	output is activated


· Connector CN1

	Х	1	Х	3	N.	C.	С	М	Ac	out	Α	in	V	′_	R	S-
	•		2	2	(3	4	1	Ę	5	(3	7	7	8	В
•		V)	1	0	1	1	1	2	1	3	1	4	1	5	
		Х	2	Iŀ	+	RS	ST	0	٧	0	V	N.	C.	RS	3+	


Note) Connection to pins No. 3 and 14 is prohibited.

Name	Symbol	IN/ OUT	Pin No.	Explanation
	X1	IN	1	
Process	X2	IN	9	Power process terminal
switch	Х3	IN	2	
Inhibit	IH	IN	10	Inhibit terminal
Common	CM	IN	4	X1,X2,X3,IH,RST common terminal
Reset	RST	IN	11	Resetting self-hold status

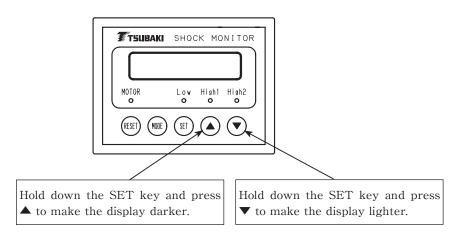
Control input

Analog output

When the model supports the terminal function as standard, the analog output characteristic can be selected with Parameter 21: OUTPUT SELECT.

TSM4000

Parameter setting


No.	Parameter	Data	Data when shipment	Contents
1	Parameter	(1)Unlocked	/1)	All parameters can be changed.
	Lock	(2)Locked	(1)	Parameters other than this parameter cannot be changed.
2	Motor Voltage	(1)200-230V	(-)	Motor voltage 3 phase 200V class
		(2)380-460V	(1)	Motor voltage 3 phase 400V class
3	Motor kW	0.1 to 110kW	0.75	Setting motor capacity
4	Start Time	0.1 to 20.0s	3.0s	Setting the start time
5	Process	1 to 8	1	Number of process
6	High2 Level Process[1]	-200 to -5% 5 to 200%	100%	Higher limit 2 level of process 1
7	Shock Time H2	MIN,0.1 to 10s	1.0s	Higher limit 2 shock time
8	Output Relay H2	(1)Self-Hold		Selecting the higher limit 2
	, ,	(2)Auto-Reset	(1)	output operation mode.
9	High1 Level	-200 to -5%	80%	Higher limit 1 level of process 1
	Process[1]	5 to 200%		
10	Shock Time H1	MIN,0.1 to 10s	1.0s	Higher limit 1 shock time
11	Output Relay H1	(1)Self-Hold	(2)	Selecting the higher limit 1
		(2)Auto-Reset	ļ · ·	output operation mode.
12	Low Level	-99 to 0 to 99%	0%	Lower limit level of process 1
13	Process[1] Shock Time L	AMNI O 1 to 10:	1.0s	I balle
		MIN,0.1 to 10s	1.Us	Lower limit shock time
14	Output Relay L	(1)Self-Hold	(1)	Selecting the lower limit output
1.5	A A - 4	(2)Auto-Reset	1000/	operation mode.
15	Motor Efficiency	10 to 100%	100%	Motor efficiency.
16	Response	1 to 50times	5times	Number of moving average sampling operations
17	Inhibit Time	IH,0.1 to 10s	IH	Inhibit time*
18	Auto Inhibit	(1)On (2)Off	(2)	Setting the auto inhibit function.
19	Power/Torque	(1)Power	/1)	Monitor with motor input power
		(2)Torque	(1)	Monitor with the torque calculated by the power
20	H2Relay Logic	(1)Fail Safe	(2)	Selecting the fail-safe operation.
		(2)Nomal Logic	\21	
21	Output Select	(1)-200 to 200% (2)0 to 200%	(2)	Selecting the analog output.
22	LCD Backlight	(1)Always	,	Keeping the backlight on at all times.
		(2)2min	(1)	Turning the backlight off two minutes after key operation.
23	Trip Test	(1)Motor on/off	(1)	Selecton of test mode during
		(2)Motor off		motor operation

^{*} Inhibit time: Time for which the power detection is temporarily stopped.

■ LCD contrast adjustment

When the LCD display is illegible, hold down the SET key and press \blacktriangle or \blacktriangledown key to adjust it.

(Note that excessively high contrast will shorten the LCD service life.)

New and unique applications for the Shock Monitor

Various application-specific types based on the "Basic type" of TSM4000!!

Our line-up of Shock Monitors fits perfectly with all kinds of applications.

Application examples and basic operations of each type

1. [Basic type] TSM4000 type ······:····For general industrial machines [Economy type] TSM4000H1 type

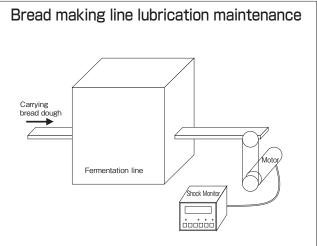
The economy type has fewer functions than the basic type.

Refer to the below charts for a comparison of Shock Monitor functions.

Damage prevention

Low speed conveyor overload protection Seats for automobiles Moto Just pulling the conveyor by hands (Shock Monitor load ratio 100%) These responses Shock Monitor load ratio 50% Shock Monitor load ratio 0%

Key point


There is little current variation due to a high gear ratio, making it difficult for the Shock Relay to detect the overload, so a power detecting type Shock Monitor is the best option.

Applications

Assembly conveyor, water and sewage treatment, garbage disposal equipment conveyors, etc.

Overload may be difficult to be detected depending on the characteristics of the machine. So, check your use conditions and contact us if you are considering detecting overloads.

Preventive maintenance

<u>Key point</u>

Shock Monitor detects even minute load rise due to the lack of lubrication for the chain. It then sends an alarm signal to operate the automatic lubricator.

Applications

Food processing machines that operate 24 hours a day, etc.

Basic operations of TSM4000H1

Simplified setting type with fewer functions After elapsing Shock Time of HIGH2, Alarm output when motor power exceeding HIGH1 level. out put the abnormal condition of the equipment. 100% HIGH2 setting Motor power HIGH1 setting Setting time of Shock Monitor outputs after exceeding HIGH2 setting level. 0% HIGH2 Shock Time Start Time HIGH1 Shock Time Setting time to prevent Shock Monitor output error due to start-up power.

[Features]

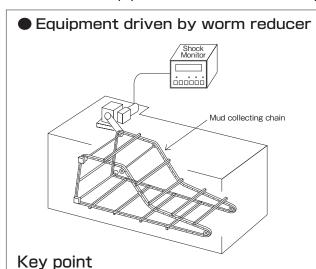
- 1) Simplified functions means easy setting.
- 2) Relay output has two outputs. It can be used as an alarm signal (HIGH1) and an abnormal level output (HIGH2).
- 3) As a set, HIGH1 and HIGH2 can be switched from the external for a maximum of 4 types. It is useful to change the setting depending on the work-piece being carried.
- 4) It comes with an efficient torque monitoring function (20 to 120Hz) for when using the inverter.

*Refer to page 172, Note: *2

Comparison on function [Basic model] and Economy model]

	Function	Basic model	Economy model						
ction	HIGH1	0	0						
Load detection	HIGH2	0	0						
Load	LOW	0	×						
Toro	que monitoring function	0	0						
	of selection of detection level lo. of process to monitor)	8	4						
noM	nitoring negative torque	0	×						

HIGH2 Output relay HIGH1 Output relay

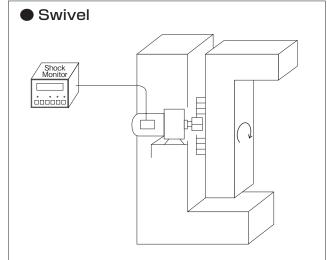

ON

ON

Minute load detection is possible by electric power: Economy type

2.[Load following type] TSM4000H2 Type...For general industrial machines

■ Protection for equipment which varies in efficiency



The efficiency of the reducer varies together with operating time. As well, even for equipment where the load ratio varies, it is possible to detect abnormal condition due to the load following function.

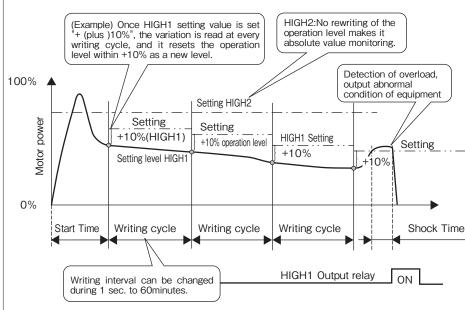
Applications

Water treatment equipment, etc.

Protection for equipment which periodically varies in load.

Key point

Even if the load of the equipment varies during 1 rotation, it is possible to detect abnormal conditions due to the load following function.


Applications

Medical equipment, etc.

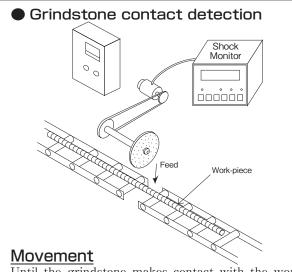
Basic operations of TSM4000H2

The set value automatically varies and follows the variation of load: load following

Because variation in machine efficiency does not affect the Shock Monitor, it makes the ideal overload protection device.

[Features]

- 1) For equipment where mechanical efficiency varies by periodically following the operational level and minimizing the efficiency variation effect, the practical overload state can be detected.
- 2) The writing cycle can be changed to meet the fluctuations of the efficiency change.
- 3) While the operational level of HIGH2 is constant and has no variation, absolute value monitoring can be done by HIGH2.

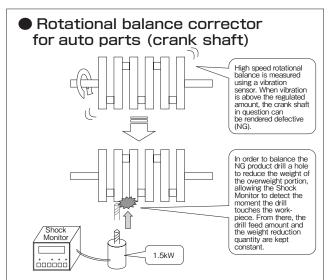

TSM4000

Application examples and basic operations of each type

3.[Contact detection type] TSM4000M1 Type····For machine tools (Industrial Property Right Patent No.: 3108798)

■ Tool and work-piece contact detection (Feed speed control, etc.)

Until the grindstone makes contact with the work-piece the feed speed is high. After the Shock Monitor has detected contact with the work-piece, the TSM4000M1 immediately switches to a low feed speed. (shortening the working time)


Key point

A minute load at an instant when the grindstone contacts with the work-piece is quickly and accurately detected. Consequently, a substantial decrease in the finishing cycle time is realized.

Applications

Metalworking, machine tools, etc.

■ Tool and work piece contact detection

Movement

When drilling the hole, if the drill touches the workpiece, it will be detected and the Shock Monitor will immediately output. From there, by keeping feed time constant, the drilled quantity is managed uniformly.

Key point

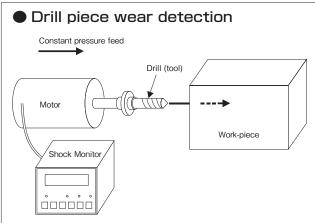
The Shock Monitor ignores common changes to idling power. Because it can only detect work volume, it can securely judge the moment contact is made with the drill (0.03s).

Applications

Machine tools (drilling machine, grinding machine, etc.)

Note: If the power source frequency exceeds 120Hz, such as a servo motor for a machine tool's main spindle, consult TEM.

Basic operations of TSM4000M1

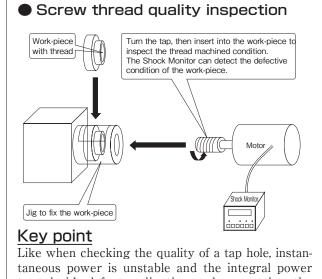

Rapidly detects work-piece contact: contact detection The idling position is automatically offset to a 0% load ratio, and the Shock Monitor can only detect work volume. [Features] Minute load variation from off-set Load ratio at no load operation 1) Because the TSM4000M1 auto-100% value can be detected and output can be off-set to 0%. matically offsets power during quickly and accurately. idling to 0%, the minute power Motor power change during tool and workpiece contact can be detected OUT3 setting value with high precision. (There are Not off-set, monitor two types of output: OUT1 absolute value. and OUT2.) 2) OUT3 is not an off set value. OUT1 setting value and absolute value can be 0% monitored. **OUT1 Shock Time** 3) In regard to a detection level, Start Time as a set, OUT1, OUT2 and OUT3 can be switched from ON **OUT1** Output relay the external for a maximum of 8 types, it can deal with the change of grindstone and work-piece.

Application examples and basic operations of each type

4.[Integral power type] TSM4000M2 Type···· For machine tools

By integrating 1 cycle of power from the manufacturing process, tool wear condition and breakage, as well as overload can be detected.

Estimated tool service life


Key point

In regard to a constant pressure finishing machine, even the tool wears but the load variation is small. By taking advantage of the increase in machining time, high precision wear detection with the integral power type model is attained.

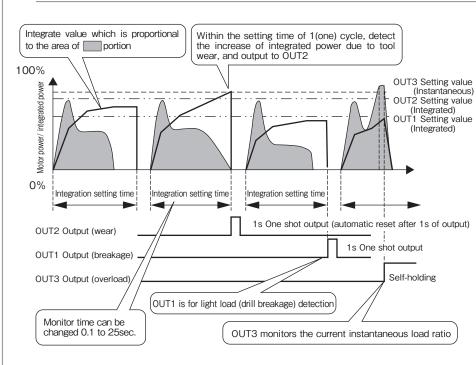
Applications

Machine tools, etc.

Check the product quality

type is ideal for applications where setting the detection level is difficult.

Applications

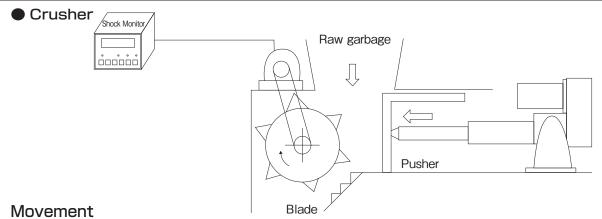

Inspection equipment etc.

Note: If the power source frequency exceeds 120Hz such as a servo motor for a machine tool main spindle, consult TEM.

Basic operations of TSM4000M2

With the total power consumption of 1 cycle, machine tool wear, breakage and overload can be detected: integral power

Machine tool wear can be detected by integrated power, and outputting the abnormal condition.


[Features]

- 1) In regard to a constant pressure finishing machine, even the tool wears but the load ratio does not increase while the machining time increases. For this application it is monitored by power consumption (area).
- 2) After machining is completed, the drill wear is detected by the upper limit of power integration (OUT2), while the drill breakage can be detected by the lower limit (OUT1).
- 3) With the instantaneous value of OUT3, overload due to jam is monitored with absolute value
- 4) As a set, there are a maximum of 8 types that OUT1, OUT2 and OUT3 can be switched between from the external. It works with the change of tools and work-pieces.
- 5) The elapsed time setting can be changed easily.

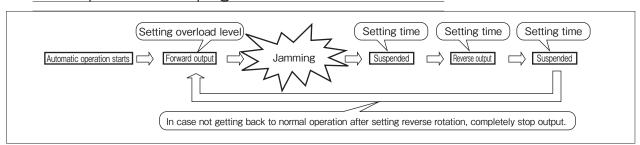
Application examples and basic operations of each type

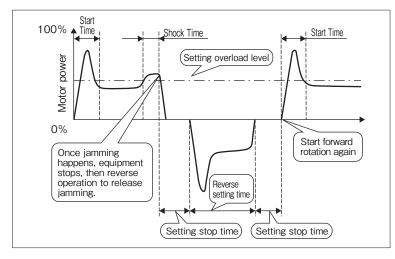
- 5. For built-in forward and reverse sequence type: TSM4000C1 Type······For crushers
 - Crusher blade protection and forward/reverse control

Precisely detects load on crusher blades. When a jam occurs, the machine automatically detects overload \rightarrow the machine stops \rightarrow moves into reverse \rightarrow stops \rightarrow moves forward repeatedly until the machine becomes un-jammed.

Key point

Blade life span increases significantly. The sequence program necessary for forward and reverse movement is built-in, so it is easy to control the crusher.

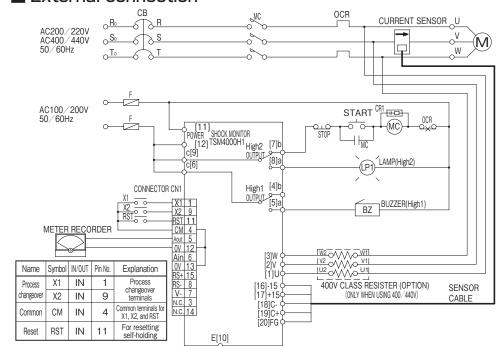

Applications


Crusher for waste disposal, reducer, screw conveyor, etc.

Basic operations of TSM4000C1

● When overload occurs the machine is automatically run in reverse: The sequence program for forward and reverse rotation is built-in.

The sequence control program for the crusher is built-in.



[Features]

- 1) Just by inputting the starting (forward movement) signal, stopping, reverse movement and restarting during overload can be controlled without an external sequencing program.
- 2) Even if the preset reverse setting time has past, when the machine does not return to normal operation, the stop signal is output and the device can be completely stopped.
- 3) The setting of overload level, stop time, and reverse running time can be easily done in the field.
- 4) To save energy it is possible to automatically stop when there is no load.

2. Economy type TSM4000H1 For general industrial machinery

External connection

СВ : Circuit breaker

· Fuse MC : Electromagnetic contactor for motor

OCR : Over current relay CR1 : CR filter START : Start button

STOP: Stop button Operating electromagnetic coil capacity

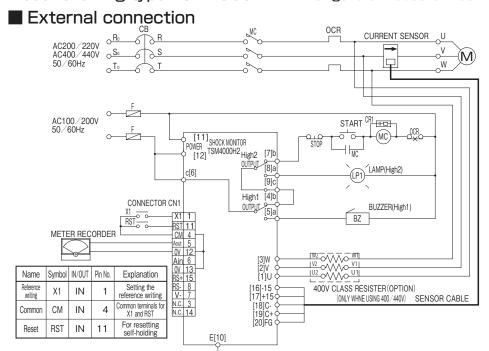
(magnetic capacity) of the electromagnetic contactor [MC] for motor should be less than 100VA when throwing, and less than 10VA when holding.

- 1. Select the current sensor from the Current Sensor table based on motor capacity and voltage. Use the specified number of passes through and current direction.
- 2. Make sure to insert the current sensor into the "phase V", and use the sensor cable TSM-SXX to connect with the Shock Monitor.
- 3. If using a 400/440V motor, use the 400V class resister shown in dashed
- 4. Connect the motor voltage terminal of the Shock Monitor U[1], V[2], W[3] with the phase of [U], [V], [W] respectively.
- Use relay for minute electric current for [X1], [X2], [RST].
- can not be detected correctly and the Shock Monitor will not work properly.

Function of terminals

Current sensor Tronnection Trapply 20 19 18 17 16 15 14 13 12 11 C-POWER +15 W U ٧ Е 8 2 3 4 5 6 7 9 10 JL High1 HIGH2 Motor Ground output output voltage input

		IN/	Pin	
Name	Symbol	OUT	No.	Explanation
Control power	POWER	IN	11	Connection of control
supply voltage	FOVVER	1114	12	power supply
Ground	Е	_	10	Ground terminal
	-15	OUT	16	
	15	OUT	17	
Current sensor	C-	IN	18	Sensor cable
3611301	C+	IN	19	
	FG	_	20	
	U	IN	1	
Motor voltage	٧	IN	2	Motor voltage input terminal
vollage	W	IN	3	leriiiilai
	b	OUT	4	Relay contact output
HIGH 1 output	а	OUT	5	when the higher limit 1
oulpui	С	OUT	6	output is activated
	b	OUT	7	Relay contact output
HIGH 2	а	OUT	8	when the higher limit 2
output	С	OUT	9	output is activated
		N.C	13	
No	_	N.C	14	Do not connect anything
connection				1 ' -


15

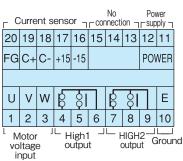
Parameter setting

No.	Parameter	Data	Data when shipment	Contents	
1	Matau Valtau-	(1)200-230V	(1)	Motor voltage 3 phase 200v class	
	Motor Voltage	(2)380-460V	(1)	Motor voltage 3 phase 400v class	
		(1)0.1kW (11)15kW			
		(2)0.2kW (12)18.5kW			
		(3)0.4kW (13)22kW			
		(4)0.75kW (14)30kW			
0	1347	(5) 1.5kW (15)37kW	75114/		
2	Motor kW	(6)2.2kW (16)45kW	0.75kW	Setting motor capacity	
		(7)3.7kW (17)55kW	1		
		(8)5.5kW (18)75kW	1		
		(9)7.5kW (19)90kW	1		
		(10)11kW (20)110kW			
3	Start Time	0.1 to 20.0s	3.0	Setting the start time	
4	Process	1 to 4	1	Number of process	
5	High1 Level	5 to 200%	80	Higher limit 1 level of process 1	
	Shock Time	MIN	1.0		
6	H1	0.1 to 10.0s	1.0	Higher limit 1 shock time	
	Output Relay	(1)Self-Hold	(0)	Selecting the output operation	
7	H1	(2)Auto-Reset	(2)	mode. (High1)	
8	High2 Level	5 to 200%	100	Higher limit 2 level of process 1	
	Shock Time	MIN			
9	H2	0.1 to 10.0s	1.0	Higher limit 2 shock time	
	Output Relay	(1)Self-Hold	(2)	Selecting the output operation	
10	H2	(2)Auto-Reset	(1)	mode. (High2)	
		(1)QUICK			
11	Response	(2)NORMAL	(2)	Number of moving average	
		(3)SLOW	1	operations	
		(1)On		Setting the auto inhibit	
12	Auto Inhibit	(2)Off	(2)	function.	
		(1)Power	,	Monitor with motor input power	
13	Power/Torque	(2)Torque	(1)	Monitor with the torque calculated by the power	
	100 0 11:	(1)Always	/	Setting the backlight	
14	LCD Backlight	(2)2min	(1)	illumination time.	

3. Load following type TSM4000H2.....For general industrial machinery

CB : Circuit breaker F : Fuse

MC : Electromagnetic contactor for motor OCR : Over current relay

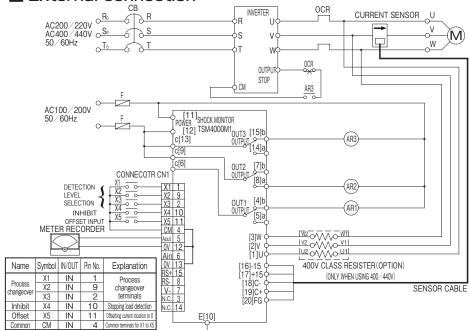

OCR : Over current relay CR1 : CR filter START : Start button STOP : Stop button

Operating electromagnetic coil capacity (magnetic capacity) of the electromagnetic contactor [MC] for motor should be less than 100VA when throwing, and less than 10VA when holding.

Note:

- Select the current sensor from the Current Sensor table based on motor capacity and voltage. Use the specified number of passes through and current direction.
- Make sure to insert the current sensor into the "phase V", and use the sensor cable TSM-SXX to connect with the Shock Monitor.
- 3. If using a 400/440V motor, use the 400V class resister shown in dashed line.4. Connect the motor voltage terminal of the
- Connect the motor voltage terminal of the Shock Monitor U[1], V[2], W[3] with the phase of [U], [V], [W] respectively.
- Use relay for minute electric current for [X1], [RST].
- In case of a wrong connection, load can not be detected correctly and the Shock Monitor will not work properly.

■ Function of terminals


■ Parameter setting

No.	Parameter	Data	Data when shipment	Contents
1	Matau Valtaura	(1)200-230V	(1)	Motor voltage 3 phase 200v class
1	Motor Voltage	(2)380-460V	(1)	Motor voltage 3 phase 400v class
2	Motor kW	(1)0.1kW (11)15kW (2)0.2kW (12)18.5kW (3)0.4kW (13)22kW (4)0.75kW (14)30kW (5)1.5kW (15)37kW (6)2.2kW (16)45kW (7)3.7kW (17)55kW (8)5.5kW (18)75kW (9)7.5kW (19)90kW (10)11kW (20)110kW	0.75kW	Setting motor capacity
3	Start Time	0.1 to 20.0s	3.0	Setting the start time
4	High1 Level	1 to 99%	10	Value of higher limit 1
5	Shock Time H1	MIN 0.1 to 10.0s	1.0	Setting HIGH 1 shock time
6	Output Relay H1	(1)Self-Hold (2)Auto-Reset	(2)	Setting the output operation mode (High 1)
7	High2 Level	5 to 200%	100	Value of higher limit 2
8	Shock Time H2	MIN 0.1 to 10.0s	1.0	Setting HIGH 2 shock time
9	Output Relay H2	(1)Self-Hold (2)Auto-Reset	(1)	Selecting the output operation mode (High 2)
10	Response	(1)QUICK (2)NORMAL (3)SLOW	(2)	Number of moving average operations
11	Auto Inhibit	(1)On (2)Off	(2)	Setting the auto inhibit function
12	Offset Mode	(1)Interval (2)X1	(2)	Setting the reference writing
13	Interval Time	1 to 60s 1.1 to 60.0min	50s	Writing cycle
14	LCD Backlight	(1)Always (2)2min	(1)	Setting the backlight illumination time.

Name	Symbol	IN/ OUT	Pin No.	Explanation
Control power	POWER	IN	11	Connection of control
supply voltage	POVVER	IIN	12	power supply
Ground	Е	-	10	Ground terminal
	-15	OUT	16	
	15	OUT	17	
Current sensor	C-	IN	18	Sensor cable
3011301	C+	IN	19	
	FG	_	20	
	U	IN	1	Motor voltage input
Motor voltage	٧	IN	2	terminal
	W	IN	3	
	b	OUT	4	
HIGH 1 output	а	OUT	5	Relative value higher limit output 1
	С	OUT	6	Oulbot 1
	b	OUT	7	A h - 4 1 1
HIGH 2 output	а	OUT	8	Absolute value higher limit output 2
опри	С	OUT	9	30.po. 2
		N.C	13	
No connection	_	N.C	14	Do not connect anything
		N.C	15	

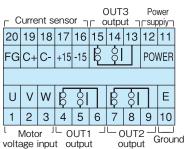
4. Contact detection typeTSM4000M1 ······ For machine tools

External connection

СВ : Circuit breaker F : Fuse

MC : Electromagnetic contactor for motor OCR : Over current relay

CR1 : CR filter START: Start button STOP: Stop button


Operating electromagnetic coil capacity (magnetic capacity) of the electromagnetic contactor [MC] for motor should be less than 100VA when throwing, and less than 10VA

Note:

- 1. Select the current sensor from the Current Sensor table based on motor capacity and voltage. Use the specified number of passes through and current direction.
- 2. Make sure to insert the current sensor into the "phase V", and use the sensor cable TSM-SXX to connect with the Shock Monitor.
- 3. If using a 400/440V motor, use the 400V class resister shown in dashed line.
- 4. Connect the motor voltage terminal of the Shock Monitor U[1], V[2], W[3] with the phase of [U], [V], [W] respectively.
- Use relay for minute electric current for [X1], [X2], [X3], [X4], [X5].

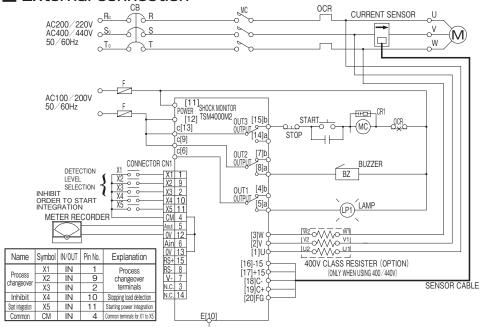
 In case of a wrong connection, load can
- not be detected correctly and the Shock Monitor will not work properly.

Function of terminals

Name	Symbol	IN/ OUT	Pin No.	Explanation	
Control power supply voltage	POWER	IN	11	Connection of control power supply	
Ground	Е	_	10	Ground terminal	
	-15	OUT	16		
	15	OUT	17		
Current Sensor	C-	IN	18	Sensor cable	
0011301	C+	IN	19		
	FG	_	20		
	U	IN	1	AA-4	
Motor voltage	٧	IN	2	Motor voltage input terminal	
vollage	W	IN	3	leriiiilai	
OUT 1	b	OUT	4	D	
OUT 1 output	а	OUT	5	Relative value higher limit output 1 after offset	
ooipoi	С	OUT	6	Colpor i dilor olisor	
0.17.0	b	OUT	7	51 1.1.1.1	
OUT 2 output	а	OUT	8	Relative value higher limit output 2 after offset	
corpor	С	OUT	9	30.po. 2 aor onoor	
OUT 0	С	OUT	13	N. W. I. I.	
OUT 3 tuatuo	а	OUT	14	Non-offset absolute value hiaher limit output.	
ourpur					

OUT

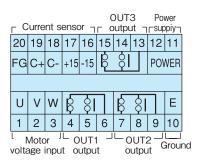
higher limit output.


Parameter setting

No.	Parameter	Data	Data when shipment	Contents
1	Parameter Lock	(1)Unlocked	(1)	Can change parameter setting Can not change parameter setting unless in an unlocked condition
	rarameter Lock	(2)Locked	(1)	
2	Motor Voltage	(1)200-230V	(1)	Motor voltage 3 phase 200v class
	7410101 Vollage	(2)380-460V	(1)	Motor voltage 3 phase 400v class
3	Motor kW	(1)0.1kW (11)15kW (2)0.2kW (12)18.5kW (3)0.4kW (13)22kW (4)0.75kW (14)30kW (5)1.5kW (15)37kW (6)2.2kW (16)45kW (7)3.7kW (17)55kW (8)5.5kW (18)75kW (9)7.5kW (19)90kW (10)11kW (20)110kW	0.75kW	σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ
4	Start Time	0.1 to 20.0s	3.0	Setting the start time
5	Process	1 to 8	1	Number of process
6	OUT1 Level	1 to 99%	10	OUT1 value
7	Shock Time OUT1	MIN 0.1 to 10.0s	1.0	OUT1 shock time
8	Output Relay OUT1	(1)Self-Hold (2)Auto-Reset	(2)	Selecting the output operation mode. (OUT1)
9	OUT2 Level	1 to 99%	15	OUT2 value
10	Shock Time OUT2	MIN 0.1 to 10.0s	1.0	OUT2 shock time
11	Output Relay OUT2	(1)Self-Hold (2)Auto-Reset	(2)	Selecting the output operation mode. (OUT2)
12	OUT3 Level	5 to 200%	80	OUT3 value
13	Shock Time OUT3	MIN 0.1 to 10.0s	1.0	OUT3 shock time
14	Output Relay OUT3	(1)Self-Hold (2)Auto-Reset	(1)	Selecting the output operation mode.(OUT3)
15	Response	(1)QUICK (2)NORMAL (3)SLOW	(2)	Number of moving average operations
16	Inhibit Time	IH 0.1 to 10.0s	IH	Setting the inhibit time
17	Auto Inhibit	(1)On (2)Off	(2)	Setting the auto inhibit function
18	LCD Backlight	(1)Always (2)2min	(1)	Setting the backlight illumination time

5. Integral power typeTSM4000M2······ For machine tools

CB : Circuit breaker
F : Fuse
MC : Electromagnetic
contactor for motor
OCR : Over current relay


CR1 : CR filter START : Start button STOP : Stop button

Operating electromagnetic coil capacity (magnetic capacity) of the electromagnetic contactor [MC] for motor should be less than 100VA when throwing, and less than 10VA when holding.

Note:

- Select the current sensor from the Current Sensor table based on motor capacity and voltage. Use the specified number of passes through and current direction.
- Make sure to insert the current sensor into the "phase V", and use the sensor cable TSM-SXX to connect with the Shock Monitor.
- If using a 400/440V motor, use the 400V class resister shown in dashed line.
- Connect the motor voltage terminal of the Shock Monitor U[1], V[2], W[3] with the phase of [U], [V], [W] respectively.
- Use relay for minute electric current for [X1], [X2], [X3], [X4], [X5].
- In case of a wrong connection, load can not be detected correctly and the Shock Monitor will not work properly.

■ Function of terminals

Name	Symbol	IN/ OUT	Pin No.	Explanation
Control power	POWER	IN	11	Connection of power
supply voltage	POVVER	IIN	12	source
Ground	Е	-	10	Ground terminal
	-15	OUT	16	
	15	OUT	17	
Current Sensor	C-	IN	18	Sensor cable
	C+	IN	19	
	FG	-	20	
	U	IN	1	
Motor voltage	V	IN	2	Motor voltage input terminal
vollage	W	IN	3	1.0
	b	OUT	4	
OUT 1 output	а	OUT	5	Lower limit output after integration
ooipoi	С	OUT	6	
OUT 0	b	OUT	7	
OUT 2 output	а	OUT	8	Higher limit output after integration
ouipui	С	OUT	9	, mogranon

OUT

OUT

а

OUT 3

output

Higher limit output at

instantaneous electric

power

Parameter setting

	arainote	,, 90,,,,,,			
No.	Parameter	Data	Data when shipment	Contents	
1	Parameter Lock	(1)Unlocked	/1)	Can change parameter setting	
	rarameter Lock	(2)Locked	(1)	Can not change parameter setting unless in an unlocked condition	
2	Base Time	0.1 to 25s	2.5	Setting the time for the rated value of integrated power	
3	Integration Time	X5,0.1 to 25s	5.0	Setting the time for power value integration	
4	Matau Valtaura	(1)200-230V	(1)	Motor voltage 3 phase 200V class	
4	Motor Voltage	(2)380-460V	(1)	Motor voltage 3 phase 400V class	
		(1)0.1kW (11)15kW			
		(2)0.2kW (12)18.5kW			
		(3)0.4kW (13)22kW			
		(4)0.75kW (14)30kW			
_		(5)1.5kW (15)37kW	0.75114		
5	Motor kW	(6)2.2kW (16)45kW	0.75kW	Setting motor capacity	
		(7)3.7kW (17)55kW			
		(8)5.5kW (18)75kW	1		
		(9)7.5kW (19)90kW			
		(10)11kW (20)110kW			
6	Start Time	0.1 to 20.0s	3.0	Setting the start time	
7	Process	1 to 8	1	Number of process	
8	OUT1 Level	0 to 99%	0	Value of OUT1 integrated power lower limit	
9	OUT2 Level	5 to 200%	80	Value of OUT2 integrated power upper limit	
10	OUT3 Level	5 to 200%	100	Value of OUT3 instantaneous power upper limit	
	Shock Time	MIN		0	
11	OUT3	0.1 to 10.0s	1.0	Setting shock time OUT 3	
10	Output Relay	(1)Self-Hold	/2.\	Selecting the output	
12	OUT3	(2)Auto-Reset	(1)	operation mode (OUT3)	
		(1)QUICK			
13	Response	(2)NORMAL	(2)	Number of moving average operations	
		(3)SLOW		operations	
1.	t lalace	IH		C I d	
14	Inhibit Time	0.1 to 10.0s	IH	Setting inhibit time	
1.5		(1)On	(0)	Setting the auto inhibit	
15	Auto Inhibit	(2)Off	(2)	function	
1/	ICD D III I	(1)Always	(1)	Setting the backlight illumination time	
16	LCD Backlight	(2)2min	(1)	illumination time	
				-	

СВ

MCF

MCR

OCR

AR1

AR2

AR3

PB0

RST

Note:

: Circuit breaker Fuse

Electromagnetic contactor for

Electromagnetic contactor for

motor to forward rotation

motor to reverse rotation

: Auxiliary relay for forward

: Auxiliary relay for reverse

: Emergency stop button : Alarm display reset

Current Sensor table based on motor

capacity and voltage. Use the specified number of passes through

Make sure to insert the current sensor into the "phase V", and use the sensor cable TSM-

3. If using a 400/440V motor, use the 400V

SXX to connect with the Shock Monitor.

class resister shown in dashed line.

Setting the backlight

illumination time

(1)

4. Connect the motor voltage terminal of

1. Select the current sensor from the

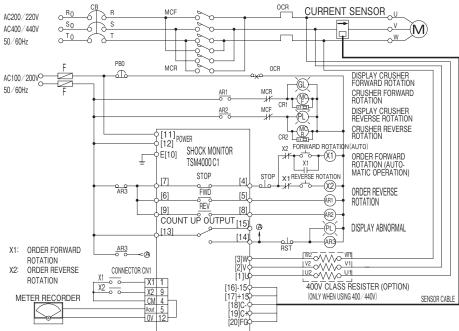
: Auxiliary relay to light alarm

Over current relay

output

output

lamp


and current direction.

CR1, 2: CR absorber

External connection/ parameter settings/ terminal functions

6. Built-in forward/reverse sequencer type TSM4000C1.....For crushers

External connection

Name	Symbol	IN/OUT	Pin No.	Explanation
Auto operation input	X1	IN	1	Auto operation
Manual reverse order	X2	IN	9	Manual reverse operation
Common	CM	IN	4	Common terminals for X1 and X2

	400V CLASS RESIS* (ONLY WHEN USING 400/4	40V) SENSOR CABLE	the the 5. Us [X1 © In c	nnect the motor voltage terminal of Shock Monitor U[1], V[2], W[3] with phase of [U], [V], [W] respectively. e relay for minute electric current for], [X2]. asse of a wrong connection, load a not be detected correctly and the pack Monitor will not work properly.
No.	Parameter Parameter	Pata Data	Data when shipment	Contents
1	Parameter lock	(1)Unlock (2)Lock	(1)	Can change parameter setting Can not change parameter setting unless in an unlocked condition
2	Motor voltage	(1)200-230V (2)380-460V	(1)	Motor voltage 3 phase 200V class Motor voltage 3 phase 400V class
3	Motor kW	(1)0.1kW (13)22kW (2)0.2kW (14)30kW (3)0.4kW (15)37kW (4)0.75kW (16)45kW (5)1.5kW (17)55kW (6)2.2kW (18)75kW (7)3.7kW (19)90kW (8)5.5kW (20)110kW (9)7.5kW (21)132kW (10)11kW (22)150kW (11)15kW (23)200kW	-0.75kW	Setting motor capacity. * Parameter (21)132kW to (23)200kWcan be set only for a 400Vclass motor.
4	No load level	Unused 5 to 200%	Unused	Prevention of idle running
5	Overload level	5 to 200%	100	Overload detection level
6	Start time	1 to 300s	5	Setting the start time
7	No load continuing level	0.1 to 60min	15.0	Time between after underrunning no load level until COUNTUP output
8	Overload duration time (Overload time)	MIN 0.1 to 10.0s	1.0	Shock time when overload occurs
9	Pause time (1)	1 to 600s	10	Pause fime during switching from forward to reverse rotation
10	Reverse time	1 to 600s	5	Reverse running time
11	Pause time (2)	1 to 600s	10	Pause time during switching from reverse to forward rotation
12	No. of reverse rotation	1 to 10 times	5	No. of reverse rotation until COUNTUP output
13	Reverse rotation	Plus 1 to 600s	10	Time to count the no. of reverse rotation. Add to 1 cycle time
14	Response	(1)QUICK (2)NORMAL	(2)	Number of moving average operations

Function of terminals

L C	urre	nt s	ensc	or ¬		unt utpu		Por Sup	wer oply-	
20	19	18	17	16	15	14	13	12	11	
FG	C+	C-	+15	-15	þ	۶I		PO	WER.	
U	٧	W	þ	्रा			्रा		Е	
1	2	3	4	5	6	7	8	9	10	
V	Moto oltag inpu	ge		FV ST	VD OP		RE	EV	Gro	und

	0101					
Name	Symbol	IN/ OUT	Pin No.	Explanation		
Control pwer supply voltage	POWER	IN	11 12	Connection of control power supply		
Ground	Е	_	10	Ground terminal		
	-15	OUT	16			
	15	OUT	17			
Current sensor	C-	IN	18	Sensor cable		
	C+	IZ	19			
	FG	_	20			
	U	IN	1			
Motor voltage	٧	IN	2	Motor voltage input terminal		
	W	IZ	3			
FWD	а	OUT	5	Order of forward rotation		
1 440	С	OUT	6	Order of forward rotation		
STOP	b	OUT	4	Order of stop (1s shot)		
3101	С	OUT	7	Order of slop (18 shot)		
REV	а	OUT	8	Order of reverse rotation		
NE Y	С	OUT	9	Order of reverse roldflon		
Count up	С	OUT	13	Count up output		
output	а	OUT	14	Count-up output (1s shot)		
	b	OUT	15	(15 51101)		

15 LCD Backlight

(3)SLOW (1)Always

(2)2min

MEMO		

Safety Guide and Warranty

WARNING

Death or serious injury may result from product misuse due to not following the instructions.

"Mechanical type Safety and Control devices"

- Begin inspection and maintenance after verifying that no load or rotational force is being applied to the equipment.
- Check the operation of the device periodically so that it can be sure to function properly when overload occurs.

"Electrical type Safety and Control devices"

- When carrying out an operation test or making a periodic inspection, make sure to verify that it functions properly as a protection device.
- Follow the instruction manual when carrying out megger testing because most electrical devices have certain requirements for megger testing.
- Check the operation of the device periodically so that it can be sure to function properly when overloaded occurs.

"Common"

- Comply with the 2-1-1 General Standard of "Ordinance on Labor Safety and Hygiene".
- When performing maintenance or inspections:
 - 1) Wear proper work clothes and protective equipment (safety devices, gloves, shoes, etc.). To avoid an accident, make sure to perform maintenance and inspections in an appropriate environment.
 - 2) Make sure the power is switched off, and the machine has stopped completely before carrying out maintenance and inspections. Take the necessary measures to ensure the power is not turned back on.
 - 3) Follow the instruction manual.
 - 4) Wire according to the technical standards of Electrical Installation and company regulations. Take note of the cautions in this manual which explain installation direction, clearance and environmental conditions. Make sure to ground the device to prevent electrical shock and to improve noise resistance.
- When using with lifting equipment, install a suitable protection device for safety purposes, otherwise an accident resulting in death, serious injury or damage to the equipment may occur due to a falling accident.

CAUTION Minor or moderate injury, as well as damage to the product may result from product misuse due to not following the instructions.

"Mechanical type Safety and Control devices"

- The strength of the equipment should be designed to withstand the load or rotational force when the device is activated due to overload.
- Wear damage may occur depending on the number and frequency of activations. Following the manual, check the functions and operations periodically. If something is not functioning properly, contact the distributor for repair.

"Electrical type Safety and Control devices"

- Consumable parts (tantalum electrolytic capacitors, relays, etc.) are built-in the products. Using the manual, periodically check the functions and operation of the device. If it is not functioning properly, contact the distributor for repair.
- Do not use the device in a corrosive gas environment. Sulphidizing gases (SO₂, H₂S) can especially corrode the copper and copper alloy used on PCBs and parts, and cause a malfunction.

"Common'

- Read the instruction manual carefully, and use the product properly. In case the instruction manual is not available, request one from the distributor where you purchased the product, or our sales office with the product name and model number.
- Deliver this instruction manual to the final customer who uses the Tsubaki E&M product.
- Do not reset the main unit or shaft of the shock guard by turning it by hand. Doing so is dangerous.

Warranty: Tsubaki E&M Co.: hereinafter referred to as "Seller" Customer: hereinafter referred to as "Buyer" Goods sold or supplied by Seller to Buyer: hereinafter referred to as "Goods"

1. Warranty period without charge

Effective 18 months from the date of shipment or 12 months from the first use of Goods, including the installation of the Goods to the Buyer's equipment or machine - whichever comes first.

2. Warranty coverage

Should any damage or problem with the Goods arise within the warranty period, given that the Goods were operated and maintained according to the instructions provided in the manual, the Seller will repair and replace at no charge once the Goods are returned to the Seller.

This warranty does not include the following:

- 1) Any costs related to removal of Goods from the Buyer's equipment or machine to repair or replace parts.
- 2) Cost to transport Buyer's equipment or machines to the Buyer's repair shop.
- 3) Costs to reimburse any profit loss due to any repair or damage and consequential losses caused by the Buyer.

3. Warranty with charge

- Seller will charge for any investigation and repair of Goods caused by:
- 1) Improper installation by failing to follow the instruction manual.
- 2) Insufficient maintenance or improper operation by the Buyer.
- Incorrect installation of the Goods to other equipment or
- 4) Any modifications or alterations of Goods by the Buyer.
- Any repair by engineers other than the Seller or those designated by the Seller.
- Operation in an environment not specified in the manual
- Force Majeure or forces beyond the Seller's control such as natural disasters and injustices inflicted by a third party.
- Secondary damage or problems incurred by the Buyer's equipment or machines.
- Defective parts supplied or specified by the Buyer.
- 10) Incorrect wiring or parameter settings by the Buyer.
- The end of life cycle of the Goods under normal usage.
- 12) Losses or damages not liable to the Seller.

4. Dispatch service

The service to dispatch a Seller's engineer to investigate, adjust or trial test the Seller's Goods is at the Buyer's expense.

The contents of this catalog are mainly to aid in product selection.

Read the instruction manual thoroughly before using the product in order to use it properly.

The logos and product names used in this catalog are either trademarks or registered trademarks of Tsubakimoto Chain Co. or the Tsubaki Group in Japan and other countries.

TSUBAKIMOTO CHAIN CO.

Headquarters

Nakanoshima Mitsui Building 3-3-3 Nakanoshima, Kita-ku Osaka, 530-0005, Japan Phone: +81-6-6441-0011 URL: http://tsubakimoto.com

Chain & Power Transmission Sales

1-3 Kannabidai, 1-chome Kvotanabe. Kyoto, 610-0380, Japan Phone: +81-774-64-5022

Group companies

NORTH and SOUTH AMERICA

U.S. TSUBAKI POWER TRANSMISSION, LLC

301 E. Marquardt Drive, Wheeling, IL 60090, U.S.A. Phone : +1-847-459-9500 URL: http://ustsubaki.com/

TSUBAKI of CANADA LIMITED

1630 Drew Road, Mississauga, Ontario, L5S 1J6, Canada Phone: +1-905-676-0400

URL: http://tsubaki.ca

TSUBAKI BRASIL EQUIPAMENTOS INDUSTRIAIS LTDA.

R. Pamplona, 1018, CJ, 73/74, Jd, Paulista CEP 01405-001, São Paulo, S.P.Brazil Phone : +55-11-3253-5656 URL : http://tsubaki.ind.b

EUROPE

TSUBAKIMOTO EUROPE B.V.

Aventurijn 1200, 3316 LB Dordrecht, The Netherlands

Phone: +31-78-620-4000 : http://tsubaki.eu

TSUBAKIMOTO U.K. LTD

Osier Drive, Sherwood Park, Annesley, Nottingham NG15 0DX, United Kingdom

Phone : +44-1623-688-700 URL: http://tsubaki.eu

TSUBAKI DEUTSCHLAND GmbH

ASTO Park Oberpfaffenhofen, Friedrichshafener Straße 1 D-82205, Gilching, Germany

Phone : +49-8105-7307100 URL: http://tsubaki.de/

OOO "TSUBAKI KABELSCHLEPP" Prospekt Andropova 18, Building 6

115432 Moscow, Russia Phone : +7-499-418212 URL: http://kabelschlepp.ru/

ASIA and OCEANIA

TAIWAN TSUBAKIMOTO CO.

No. 33, Lane 17, Zihciang North Road Gueishan Township Taoyuan County Taiwan R.O.C. Phone : +886-3-3293827/8/9

URL: http://tsubakimoto.com.tw

TSUBAKIMOTO SINGAPORE PTE. LTD.

25 Gul Lane, Jurong, Singapore 629419 Phone : +65-6861-0422/3/4

TSUBAKIMOTO CHAIN (SHANGHAI) CO. LTD. Room 601, Urban City Centre, 45 Nanchang Road

Huangpu District, Shanghai 2000020, People's Republic of China Phone : +86-21-5396-6651/2

URL: http://tsubaki.cn/

TSUBAKIMOTO SINGAPORE PTE. LTD. VIETNAM REPRESENTATIVE OFFICE

H&H Building 8F, 209 Hoàng Văn Thụ Phú Nhuận District, Hồ Chí Minh City, Vietnam

Phone : +84-8-3999-0131/2
URL : http://tsubaki.net.vn/

TSUBAKI POWER TRANSMISSION (MALAYSIA) SDN. BHD.

Bukit Jelutong Industrial Park

TSUBAKI AUSTRALIA PTY. LTD.

Unit E, 95-101 Silverwater Road Silverwater NSW 2128, Australia Phone: +61-02-9704-2500 : http://tsubaki.com.au

TSUBAKI INDIA POWER TRANSMISSION PVT. LTD.

Chandrika Chambers No.4, 3rd Floor, Anthony Stree Royapettah, Chennai, Tamil Nadu 600014, India

Phone : +91-44-4231-5251 URL: http://tsubaki.in/

No. 22, Jalan Astaka U8/84A

URL: http://tsubaki.sq

Section U8, 40150 Shah Alam, Selangor, Malaysia

Phone : +60-3-7859-8585 URL : http://tsubaki.sg

PT. TSUBAKI INDONESIA TRADING

Wisma 46 - Kota BNI, 24th Floor, Suite 24.15 Wishing 49 Robert Host, Sudi Host

TSUBAKIMOTO (THAILAND) CO. LTD. 388 Exchange Tower, 19th Floor Unit 1902

Sukhumvit Road, Klongtoey, Bangkok 10110, Thailand Phone : +66-2-262-0667/8/9 URL : http://tsubaki.co.th

TSUBAKIMOTO KOREA CO., LTD. #1004/1005 East Wing, Hanshin Intervalley 24, 707-34

Yeoksam-dong, Gangnam-gu, Seoul, Korea Phone : +82-02-2183-0311 URL : http://tsubakimoto.com

TSUBAKI AUSTRALIA PTY. LTD. NEW ZEALAND BRANCH

2 Kalmia Street, Ellerslie, Auckland 1051, New Zealand

Phone: +64-275-082-726 Phone : http://tsubaki.com.au

Distributed by: