

TSUBAKI POWER CYLINDER T-Series

Power Cylinder

APPLICATION SOLUTION

For pusher/roller conveyor

TSUBAKI E&M Power Cylinders were born over 40 years ago, and have been used across a variety of industries by a wide range of customers. By taking advantage of our accumulated experience, we have continued to develop new

products as well as upgrade technologies, and proactively address environmental issues to create our present series.

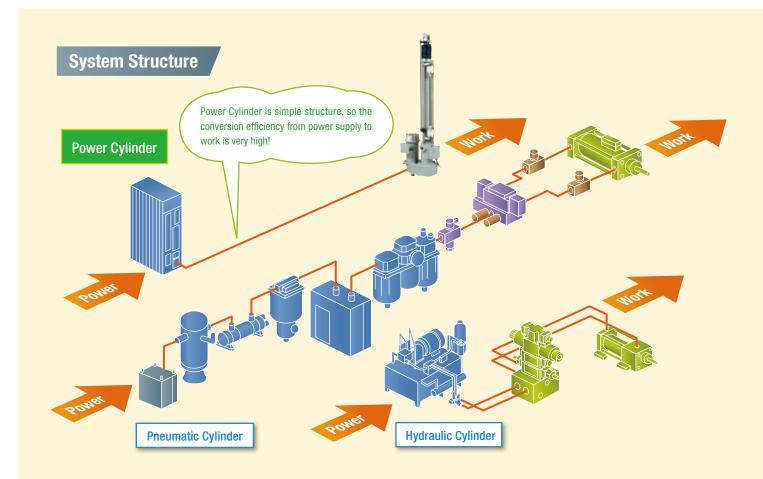
We will continue to create products which are customer-friendly, taking the environment into consideration.

1

Power Cylinder is "ecologically-

Compared to hydraulic or pneumatic cylinders, our Power Cylinder is more economical because it needs less electricity.

Clean operation


Clean operation is possible because there is oil leak.

Easy installation

Unlike hydraulic cylinders, operation at a high place and under adverse environment is easier, because Power Cylinder does not require unit installation.

Operable only by electrical wiring

All you need for operation is electrical wiring.

friendly"

User's voice

Compared to Pneumatic Cylinder & Hydraulic Cylinder...

All area

We wanted energy saving products for future power shortage. Oil/air leak maintenance frequency is reduced. Easy speed control.

No more labor shortage for maintenance of oil system.

Shipbuilding, Hydraulic power, Sewer processing

It can avoid water & sea pollution by oil leak.

Medical

It is clean because of no oil leak.

Steel plant

- The number of remote controls (long distance line) and pipe fittings is reduced.
- Oil leak is a fire hazard at high temperature area.

Metalworking machine

The positioning accuracy is better than Pneumatic Cylinder.

Electricity

comparison

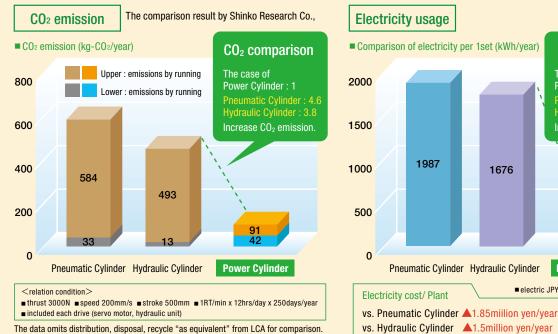
Increase electricity cost

The case of

Power Cylinder : 1

310

Power Cylinder electric JPY22/kWH = 50cylinders usage


84% reduction

82% reduction

Several Power Cylinders can be synchronized.

1676

LCA assessment of Power Cylinder

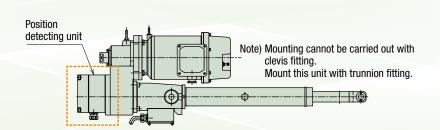
The data omits distribution, disposal, recycle "as equivalent" from LCA for comparison. Reference : MiLCA ver1.0 by JEMAI, and other catalogs

Power Cylinder T series Motor Adapter type

High Performance linear actuators offering efficient, Clean and Quite drive... Environmental consciousness.

APPLICATION EXAMPLES

HOPPER GATE


HOPPER GATE

DIVERTER GATE

Customer can mount your desired motor on side. see page 11

We can also provide the unit equipped three phase motor with brake. see page 13

Internal Position sensor; Limit switch type: K2, K4

Available at your choice for signaling the position of the stroke. see page 34

Positionmeter (Analog): P Rotary Encoder (Digital): R

Available at your choice for remote control operation. see page 34

-Tough -Extremely Durable -Will exceed your expectations

GATE SWITCHING

SHIP LOADER

Bellows: J

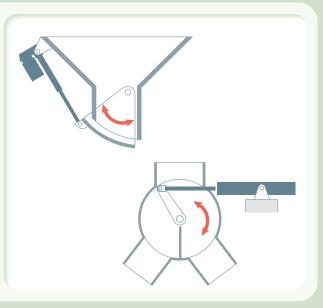
To be used in dusty areas when needed.

External Limit switches: L

Available at your choice for adjusting the stroke of the acuator.

Press Loaded Stopping Device; (LPTC type)

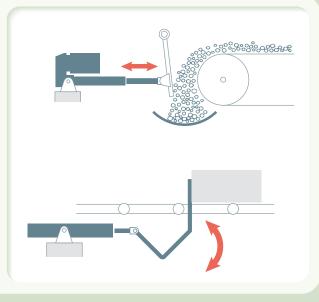
For safety and thrust sensing.


A combination of disk springs and limit switches is used to provide thrust sensing and press loaded stopping.

Examples of use

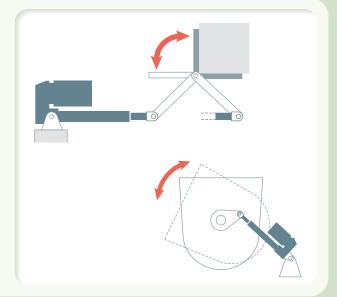
Opening and closing

Various types of opening and closing can be performed by changing the linear motion of power cylinders into turning force through link mechanisms or by using the linear motion as it is. The G series (GC type) and T series (TC type) that can press at the end are suitable. Those with a position detecting unit are used to indicate the degree of opening.


- Opening and closing of hopper gates
- Opening and closing of switching dampers
- Opening and closing of the lids of drying furnaces, incinerators, various kilns, etc.

Stopper

Conveyed objects can be stopped or changed in direction mainly through the link mechanisms in addition to the linear motion of power cylinders. Also, they can be stopped directly by power cylinders.


- Directional adjustments of the flows of conveyed objects on belt conveyors
- Stopper for conveyed objects on roller conveyors
- Stopper for materials in material cutting machines

Turnover

Conveyed objects can be turned over and transferred by the linear motion of power cylinders and simple supporting arrangements. Smooth operation can be performed with little backlash.

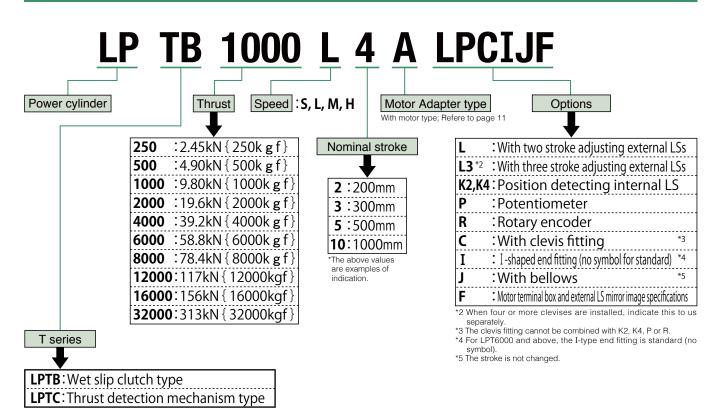

- Turnover devices for steel materials and packaged goods
- Lateral turning of wire bobbins
- Turnover of furnaces

Table of Contens

Model No. designation / Standard model list	
Structure	1
Motor Adapter type	1
Classification of usage for LPTB and LPTC types	1
Selection	1
Dimensions Table	·
Position detecting unit	:
Wire connection	:
Installation / Maintenance	4
Warning	4
Inquiry Form	

* The Trunnion fitting is not included in the body model number. Please separately specify a Trunnion model number.
 * Manual operating handles are also available.

Powe	r cylinde	er	Rat thr	ted ust	Nominal speed 50/60Hz	Motor output	Rod movement per one turn of manual	Rod rotating force		Nominal stroke	
r	nodel		N	{kgf}	mm/s	kW	shaft mm	N∙m	{kgf•m}	mm	Brake specifications
LPTB LPTC	250	S L M H	2.45k	250	12.5/15 25/30 50/60 100/120	0.1 0.1 0.2 0.4	2.0 1.0 2.0 4.0	2.60	0.27	200, 300, 400 500, 600	
LPTB LPTC	500	S L M H	4.90k	500	12.5/15 25/30 50/60 100/120	0.1 0.2 0.4 0.75	2.0 1.0 2.0 3.9	5.20	0.53	200, 300, 400 500, 600, 800	
LPTB LPTC	1000	S L M H	9.80k (7.84k)	1000 (800)	12.5/15 25/30 50/60 100/120	0.2 0.4 0.75 1.5	2.0 1.0 2.0 4.0	13.8	1.41	200, 300, 400 500, 600, 800 ※1000 (Rated thrust is 7.84kN)	
LPTB LPTC	2000	S L M H	19.6k (15.6k) (12.2k)	2000 (1600) (1250)	12.5/15 25/30 50/60 75/90	0.4 0.75 1.5 2.2	2.0 1.0 2.0 3.0	34.7 3.54 500, 600 *1000 (Rated th		200, 300, 400 500, 600, 800 ※1000 (Rated thrust is 15.7kN) ※1200 (Rated thrust is 12.2kN)	
LPTB LPTC	4000	S L M H	39.2k (33.3k)	4000 (3400)	9/11 25/30 35/42 60/72	0.75 1.5 2.2 3.7	1.4 1.0 1.4 2.4	83.2	8.49	200, 300, 400 500, 600, 800 1000, 1200 ※1500 (Rated thrust is 33.3kN)	(Note) With motor type ● DC brake
LPTB LPTC	6000	S L M H	58.8k	6000	6.3/7.6 17.5/21 25/30 42/50	0.75 1.5 2.2 3.7	1.0 0.7 1.0 1.7	124	12.7	500 1000 1500	 Brake external wiring is available
LPTB LPTC	8000	S L M H	78.4k	8000	10/12 20/24 30/36 43/52	1.5 2.2 3.7 5.5	1.2 0.8 1.2 1.7	222	22.6	500 1000 1500	
LPTB LPTC	12000	L M H	117k	12000	10/12 18/22 30/36	2.2 3.7 5.5	1.2 2.2 1.2	333	34.0	500 1000 1500 2000	
LPTB LPTC	16000	L M H	156k	16000	14.5/17.5 20/24 31/37	3.7 5.5 7.5	2.9 3.2 3.7	666	67.9	500 1000 1500 2000	
LPTB LPTC	32000	L M H	313k	32000	10/12 15/18 20/24	5.5 7.5 11	0.4 0.6 0.8	1330	136	500 1000 1500 2000	

Note) The numerical value in parentheses on rated thrust is for the long stroke type.

The rated thrust is limited for the stroke marked with an*.
 The speeds indicate a value at the motor synchronized rotating speed.

Motor specifications

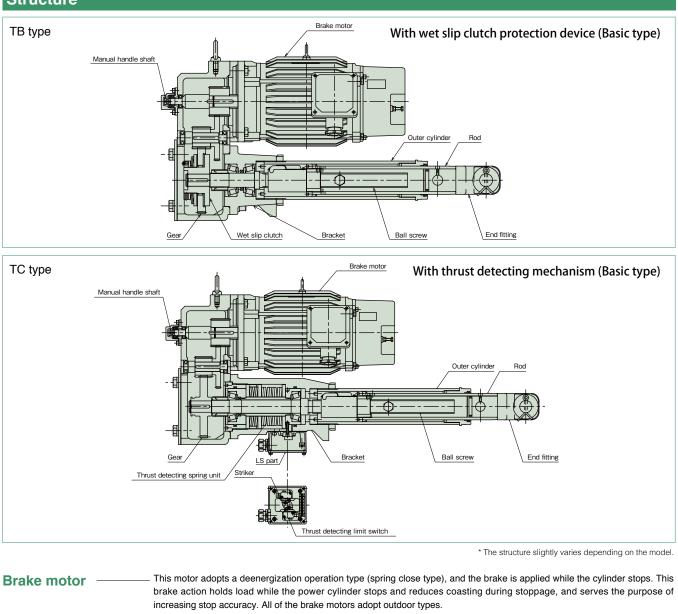
Model	Totally enclosed self cooling type with brake					
Output	Refer to Standard model dimensions list					
Number of poles	4 poles					
Voltage	3 <i>ф</i> 200V/200V/220V					
Frequency	50Hz/60Hz/60Hz					
Heat resistance class	E (B for 1.5kW or less)					
Time rating	S2 30min.					
Protection method	Totally enclosed outdoor type (IP55)					

1) 400/440V, different voltage specifications other than the above voltages are also available. 2) For motor current value and brake current value, refer to page 41.

Painting color

TSUBAKI olive gray (Munsell 5GY6/0.5 or approximate color)

Structure


Standard use environment

Environ- ment Model	Ambient temperature	Relative humidity	Impact resistance value	Installation altitude	Atmosphere
Outdoor type	−15℃ 40℃	85% or less (no dew condensation)	1G or less	1000m or lower above sea level	Normally outdoors

1) Cylinders with bellows are recommended in an excessively dusty location.

2) Special painting is available for locations exposed to sea breezes and salt. Consult us.
3) All models are totally enclosed structures so that they can be used normally outdoors, however, under adverse conditions exposed to constant water and steam etc., and snow accumulation, although they are an outdoors type, an appropriate cover is required. When using at 40°C or higher, always protect with a heat insulating cover, etc. Never use in a flammable atmosphere, otherwise it may cause an explosion and fire. In addition, avoid using it in a location where vibration or shock exceeding 1G is applied.

4) For use in a misty atmosphere, contact us.

Reduction part — The reduction part adopts a combination of a helical gear on the high speed side and a spur gear on the low speed side. The lubrication method is grease bath type, and has a quiet operating specification. Furthermore, a manual handle shaft is provided, and the structure of the speed reducer facilitates operation at power failure and adjustment for installation. As options, various position detecting devices can be installed.

Actuation part The actuation part is provided with a ball screw and nut which converts a rotating force into linear motion. Further, external limit switches for stroke adjustment can be mounted. A high precision ball screw and nut have advantages such as high transmission efficiency, less wear, long life and easy lubrication.

The external limit switches for stroke adjustment are structured to freely adjust the stroke and endure outdoor use. The bellows are excellent in weatherproofing, and the stroke does not change even if the bellows are mounted. The seal for the rod also endures outdoor use.

Motor Adapter type

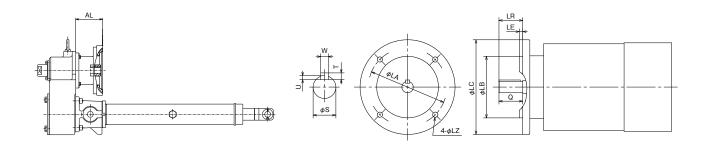
Features

- Power Cylinder Motor Adapter types are cylinder on which you can easily mount a motor with a brake, such as your regional standard motor, global standard motor (e.g. UL, CE, CCC), or pressure-resistant explosion-proof motor.
- Available for IEC standard flange motor.
- Motor Adaptor type cylinder which is for a NEMA motor, a servo motor, and a special shaft-end motor is also available. Please contact us for detail.

Standard motor of your country
 Explosion-proof motors
 Other special motors

This cylinder can be installed to motors conforming to the "IEC" standard.

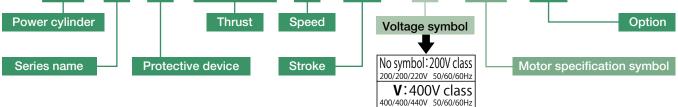
Model No. indication


LPTB500L6AL -TK

Motor spec

In order to exert the same capacity as those of the Power Cylinder T series. The motor start torque should be "200%" of the rated torque or more and the brake torque should be "150%" of the rated torque or more.

Dimensions of input section


																(mm)
		Motor output	Motor	Dimension	IEC					EC flan	ige din	nensio				
Model	Speed	4P-(kW)	size	AL	flange	LA	LB	LC	LE	LR	LZ	Q	S	W	Т	U
	S	0.1	63	80	FF130	130	110 j6	160	3.5	23	10	23	11 h6	4	4	2.5
LPTB 250	L	0.1	63	72	FF130	130	110 j6	160	3.5	23	10	23	11 h6	4	4	2.5
LPTC 250	M	0.2	63	72	FF130	130	110 j6	160	3.5	23	10	23	11 h6	4	4	2.5
	Н	0.4	71M	72	FF130	130	110 j6	160	3.5	30	10	30	14 j6	5	5	3
	S	0.1	63	80	FF130	130	110 j6	160	3.5	23	10	23	11 h6	4	4	2.5
LPTB 500	L	0.2	63	72	FF130	130	110 j6	160	3.5	23	10	23	11 h6	4	4	2.5
LPTC 500	M	0.4	71M	72	FF130	130	110 j6	160	3.5	30	10	30	14 j6	5	5	3
	Н	0.75	80M	92	FF165	165	130 j6	200	3.5	40	12	40	19 j6	6	6	3.5
	S	0.2	63	80	FF130	130	110 j6	160	3.5	23	10	23	11 h6	4	4	2.5
LPTB 1000	L	0.4	71M	72	FF130	130	110 j6	160	3.5	30	10	30	14 j6	5	5	3
LPTC	M	0.75	80M	92	FF165	165	130 j6	200	3.5	40	12	40	19 j6	6	6	3.5
	Н	1.5	90L	92	FF165	165	130 j6	200	3.5	50	12	50	24 j6	8	7	4
LPTB 2000	S	0.4	71M	85	FF130	130	110 j6	160	3.5	30	10	30	14 j6	5	5	3
	L	0.75	80M	72	FF165	165	130 j6	200	3.5	40	12	40	19 j6	6	6	3.5
LPTC 2000	M	1.5	90L	72	FF165	165	130 j6	200	3.5	50	12	50	24 j6	8	7	4
	Н	Please contact us								Pleas	se conta	ict us				
	S	0.75	80M	90	FF165	165	130 j6	200	3.5	40	12	40	19 j6	6	6	3.5
LPTB 4000	L	1.5	90L	72	FF165	165	130 j6	200	3.5	50	12	50	24 j6	8	7	4
LPTC 4000	M	2.2	100L	116	FF215	215	180 j6	250	4	60	14.5	60	28 j6	8	7	4
	Н	3.7	112M	116	FF215	215	180 j6	250	4	60	14.5	60	28 j6	8	7	4
	S	0.75	80M	90	FF165	165	130 j6	200	3.5	40	12	40	19 j6	6	6	3.5
LPTB 6000	L	1.5	90L	75	FF165	165	130 j6	200	3.5	50	12	50	24 j6	8	7	4
LPTC 6000	M	2.2	100L	116	FF215	215	180 j6	250	4	60	14.5	60	28 j6	8	7	4
	Н	3.7	112M	116	FF215	215	180 j6	250	4	60	14.5	60	28 j6	8	7	4
	S	1.5	90L	137	FF165	165	130 j6	200	3.5	50	12	50	24 j6	8	7	4
LPTB 8000	L	2.2	100L	96	FF215	215	180 j6	250	4	60	14.5	60	28 j6	8	7	4
LPTC 8000	M	3.7	112M	96	FF215	215	180 j6	250	4	60	14.5	60	28 j6	8	7	4
	Н	5.5	132S	121	FF265	265	230 j6	300	4	80	14.5	80	38 k6	10	5	8
LPTB 12000	L	2.2	100L	145	FF215	215	180 j6	250	4	60	14.5	60	28 j6	8	7	4
LPTE 12000	M	3.7	112M	145	FF215	215	180 j6	250	4	60	14.5	60	28 j6	8	7	4
	Н	5.5	132S	121	FF265	265	230 j6	300	4	80	14.5	80	38 k6	10	5	8
	L	3.7	112M	145	FF215	215	180 j6	250	4	60	14.5	60	28 j6	8	7	4
LPTB 16000	М	5.5	132S	170	FF215	265	230 j6	300	4	80	14.5	80	38 k6	10	5	8
LPTC	Н	7.5	132M	170	FF215	265	230 j6	300	4	80	14.5	80	38 k6	10	5	8
LPTB LPTC 32000	L,M,H	Plea	se conta	ct us						Pleas	se conta	ict us				

With Motor type

Model No. designation

LP T C 4000 L 10 V T1 LJ - TK

Special Brake motor

Heat resistance specification: T

Compared with conventional products, substantial reductions in delivery time and price reduction have been realized. Also, heat resistance class "H", which would conventionally be unavailable, can be met.

Common specifications> • Adaptable motor capacity: 0.1kW – 1.5kW
• Totally outdoor type (IP55) with brake (The heat resistance class of the brake is B.)

Heat resistance class "F" supported	
40°C	60°C
 Model No.: T1 (200V class), VT1 (400V class), V1T1 (380V, 50Hz), V2T1 (380V, 60Hz), V3T1 (415V, 50Hz), V4T1 (460V, 60Hz) Usable temperature range: 0 – 40°C (non-condensing) Duty factor: 25%ED Rating: S2 30min. Brake power supply module: Built into the terminal box 	 Model No.: T2 (200V class), VT2 (400V class), V1T2 (380V, 50Hz), V2T2 (380V, 60Hz), V3T2 (415V, 50Hz), V4T2 (460V, 60Hz) Usable temperature range: 0 - 60°C (non-condensing) Duty factor: 15%ED Rating: S2 15min. Brake power supply module: Separate placement (standard DC module)
(80°C)	 Install in a 40°C or lower environment. If being built into the terminal box is desired, contact us.
Usable temperature range: 0 – 80°C (non-condensing) Duty factor: 5%ED Rating: S2 5min. Brake power supply module: Separate placement (standard D	C module) * Install in a 40°C or lower environment. * If being built into the terminal box is desired, contact us.
Heat resistance class "H" supported	
■Model No.: T4 (200V class), VT4 (400V class), V1T4 (380V Usable temperature range: 0 – 80°C (non-condensing) * wa Duty factor: 15%ED Rating: S2 15min. Brake power supply module: Separate placement (special DC	c module) * Install in a 40°C or lower environment.
	* The motor terminal is a lug type.
Different voltage specification: V	
Ve will deliver conventionally-available different volta equest and arrangements can be made smoothly throu	age motors in a short period of time. Also, an estimation Igh model-numbering of each voltage.
Common specifications> • Adaptable motor capacity: 0.1kW – 1.5	5kW

- Adaptable motor capacity: 0.1kW 1.5
 Totally outdoor type (IP55) with brake
- Heat resistance class B

Different voltage supported Reference delivery time + one week

 Model No.: V1 (380V, 50Hz), V2 (380V, 60Hz), V3 (415V, 50Hz), V4 (460V, 60Hz)
 Usable temperature range: -15 – 40°C (non-condensing)
 Duty factor: 25%ED
 Rating: S2 30min.
 Brake power supply module: Built into the terminal box Note

· For using the brakes by external wiring, contact us.

Inverter specification: Z

Compared with conventional products, substantial reduction in delivery time and price reduction have been realized. The controllability of power cylinders has been improved as speed control including acceleration and deceleration and speed variations can be performed easily. Also, outdoor type with brake is standard.

<Common specifications> · Adaptable motor capacity: 0.1kW - 1.5kW

- Totally outdoor type (IP55) with brake (The heat resistance class of the brake is B.)
- Heat resistance class F
- Constant torque operation can be performed in the range of 6 60Hz.

Inverter drive supported

Model No.: Z (200V class), ZV (400V class)

Usable temperature range: 0 – 40°C (non-condensing) Duty factor: 25%ED Rating: S2 30min. Brake power supply module: Built into the terminal box

Brake power supply module: Built into the terminal box * Apply not inverter output but normal power supply voltage to the brake power supply module. Applicable power supply voltage is 200 – 220V for 200V class and 400 – 440V for 400V class.

· Only brake motors are compliant with the standards.

If limit switches, etc., are required, contact us.

Global specification: N

Power cylinders conforming to worldwide directives, standards and systems (CE, UL and CCC) are available. They can be used for equipment to be exported abroad.

Note

<Common specifications>

- Adaptable motor capacity: 0.1kW 0.4kW
- Usable temperature range: -15 40°C (non-condensing)
- Totally indoor type with brake

CE-compliant

- Model No.: Z (200V class), VN (400V class)
- Specifications (both N and VN) Protection class: IP20 Heat resistance class: B

UL-compliant

- ■Model No.: N2 (230/240V, 60/60Hz), VN2 (460V, 60Hz)
- Specifications (both N2 and VN2) Protection class: IP20 Heat resistance class: A

CCC-compliant

- Model No.: N3 (200/220/200/220V, 50/50 60/60Hz) * Only 200/220V, 50/60Hz for 0.4kW. VN3 (380V/50Hz)
- ■Specifications (both N3 and VN3) Protection class: IP23 Heat resistance class: E

Target directive: Low Voltage Directive 73/23/EEC Target standard: EN60034-1 (general motor regulations)

Target directive and standard

Products to be exported to the European market must be CE-marked to prove conformity with safety requirements provided by EC Directives. (Being "CE-compliant" is to affix a "CE mark" to products to prove conformity with EC Directives.)

National standard: GB12350

UL is an abbreviation for "Underwriters Laboratories" which represents safety standards for testing in the U.S. (Being "UL-compliant" is to affix a "UL mark" to products to prove UL standard certification with use of UL-standard-accredited motors.) Our certification in C-UR model conforms with both UL and CSA standards.

CCC is the China Compulsory Certification system, and for exporting 1.1kW or smaller motors to China, it is necessary to indicate a "CCC mark" to prove compulsory certification. We have received certification from the CQC (China Quality Certification Center).

Explosion-proof specification: D

Power cylinders adaptable to explosion-proof structures, which can be used in class 1 and class 2 hazardous locations, can be delivered in a short period of time. A vessel having an explosion-proof structure withstands the pressure of an explosion of explosive gas, if caused inside the vessel, and poses no danger of catching fire with external explosive gas.

<Common specifications>

- Adaptable motor capacity: 0.2kW 1.5kW
- Totally outdoor type (IP44) with brake
- · Heat resistance class B

d2G4-compliantd

Note

- Inverters cannot be used.
- · Stroke adjusting external limit switches are available. Contact us.
- LPTC (thrust detection mechanism type) and the position detecting unit part cannot be explosion-proof.
- Brakes cannot be used by external wiring.

■Model No.: D (200V class), VD (400V class) Usable temperature range: -10 – 40°C (non-condensing) Duty factor: 25%ED

Rating: S3 40%. Brake power supply module: None (AC brake)

Classification of usage for LPTB and LPTC types

Both types of the power cylinders have the same basic functions (thrust, speed, stroke), however, each has its feature as regards the mechanism. Read the following to select the optimum type.

TB type

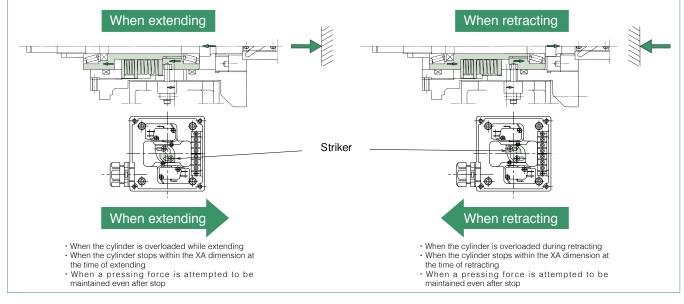
• Wet slip clutch type (simple type)

[Wet slip clutch]

The screw shaft end of the reduction part incorporates a slip clutch which operates stably in grease as a safety device. Adoption of special lining exerts a protective function even at the time of overload or stroke overextension. * When overload is electrically detected, use in combination with our shock relay is recommended.

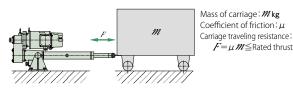
TC type

Thrust detecting mechanism type


- This type exerts its effect in the following cases.
- ① When performing press (pull) stop
- 2 When requiring an electric signal at the time of overload

$\ensuremath{\textcircled{3}}$ When an overload is possibly applied from the load side during stop

When an overload is impulsively applied, the incorporated spring absorbs the impact load.


[Thrust detecting mechanism]

This is a thrust detecting mechanism which combines two types of pre-loaded disc springs whose spring constants are different from each other and limit switches. The combined effect of these disc springs also allows for press and stop of the high speed type. (There is only one type for the 6000 type and larger.)

Preset thrust for safety device

For both of the TB type and TC type, the thrust for the safety device has been set to approximately 150% to 200% of the rated thrust. The safety device does not work at the start for opening/closing of the damper or the hopper gate, normal reverse, inclination and elevation, however, when a load inertia is large due to horizontal movement of carriage, the safety device may work to impair smooth operation at the start. For the allowable mass *M* of each model, see Table 4 on page 18.

Cautions for use

When pressing (pulling) and stopping at high frequency

When using the power cylinder at a frequency of ten or more times a day, refer to the total stop times for every model in the following table.

Туре	LPTC250~LPTC4000			LPTC6000~LPTC32000			
Speed	S,L	М	Н	S,L	М	Н	
Reference total stop times (×10 ⁴ times)	30	10	5	10	3	1	

Note) When the power cylinder is used for press (pull) contact stopping, external wiring is recommended for the wire connection of the brake.

Note) When the power cylinder is used exceeding the values on the above table, it is recommended to stop with the stroke adjusting LS.

Note) When the power cylinder is used with press (pull) stop, strength of the mating equipment shall be 250% or more of the rated thrust.

- When multiple operation or stroke position control is performed
- 1 When installing rotary encoder or potentiometer

For the TC type, a spring mechanism is built in the operating part. The spring slightly deflects at press (pull) and stop, or when overload occurs, the signal amount deviates by the deflection. For the TB type, even if the safety device is tripped, signal amount does not deviate. However, the TC type can be used at normal stroke operation.

② When there is a problem with movement of the rod even if overload is applied from load side during stop

For the TC type, a spring mechanism is built in the operating part, therefore, when a large load is applied from the load side, the spring deflects and the rod moves by the deflection.

When the load is eliminated, the rod returns to the original position.

Conditions of use required for selection

- 1. Machine to be used and
- application
- 2. Thrust or load N { kgf }3. Stroke mm
- 3. Stroke mm
- 4. Speed mm/s
- 5. Frequency of operation, cycles/min.

Selection procedures

Determination of model STEP 1

Determine the type (TB or TC) according to the use environment and method of operation.

6. Hours of operation and annual

number of operating days

9. Power voltage, frequency

8. Environment of use

7. Type of load of machine used

Determination of model No. STEP 2

1. Obtain annual traveling distance from the stroke, frequency of operation and hours of operation.

Annual traveling distance km = Actual stroke m x Frequency of use/day x number of operating days x $10^{\circ3}$

Obtain the operation factor from the characteristics of load and the machine used, referring to Table 1.

Table 2 Allowable frequency of operation

- 3. Multiply thrust or load by operation factor to obtain a corrected thrust.
- 4. Determine the frame No. from the "Expected Traveling Distance" shown below on this page according to the corrected thrust and annual traveling distance, and select an applicable model No. from the standard model list (page 9) based on the stroke, speed, power supply voltage and frequency.

Characteristics check STEP 3

- 1. Use the power cylinder at a frequency of operation below the allowable frequency of operation (Table 2).
- 2. Check the load time ratio.
- Positioning accuracy varies depending on the stopping method. Refer to the stopping method (page 17).

Table 1 Operation factor

Characteristics of load	Example of machine used	Operation factor
Smooth operation without impact Small inertia	Damper, opening/closing of valve, conveyor changeover device	1.0~1.3
Operation with light impact Intermediate inertia	Opening/closing of hopper gate, various transfer equipment, various lifter elevation	1.3~1.5
Operation with large impact and vibration Large inertia	Heavy object conveyance by carriage, buffer for belt conveyor, inversion opening/closing device for large lid	1.5~3.0

Note) The above operation factor table shows general guidelines. Therefore, make a determination in consideration of operating conditions

LPTB•LPTC | LPTB•LPTC LPTB•LPTC LPTB•LPTC LPTB•LPTC LPTB•LPTC LPTB•LPTC LPTB•LPTC LPTB•LPTC LPTB•LPTC Тур 500H 1000H 2000H 4000H 250H 8000H 250S 250M 1000M 2000M 4000M 6000H 500M 16000H 12000H Power cylinder model 250L 500L 2000L 4000L 6000M 8000M 32000H 1000L 16000M 32000M 500S 1000S 4000S 6000L 8000L 12000M 20005 320001 80005 60005 12000L 16000L Number of starting time (Number of times/min) 5 5 5 2 4 4 4 4 3 3

Note) The above frequencies of operation are values determined by heat generation of the motor. They are not values taking life of the cylinder body into consideration.

Allowable frequency of operation for the power cylinder T series is within a range which satisfies the number of starting times and load time ratio in the above table. The load time ratio is expressed by the following equation.

Operation time of one cycle (Operation time of one cycle + dwell time) ×100%

25%ED

Guide for life

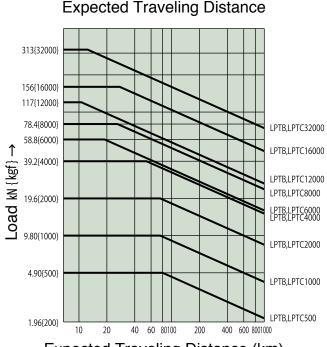
Use the number of operation times of the brake and the traveling distance of the cylinder (nut) as a guide for product life of the power cylinder T series to select the cylinder (nut).

1. Number of operation times of brake

Expected life 2 million times

Load time ratio(%ED)

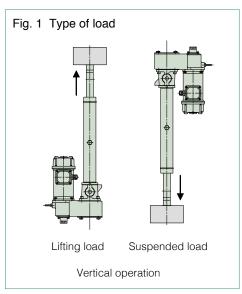
2. Traveling distance of cylinder (nut)


The life of a ball screw is determined by flaking of the rolling surface caused by its fatigue. Check the rough life with this chart of expected traveling distance. However, in the case of great impact or in the case where lubrication or maintenance is not performed properly, the expected traveling distance becomes substantially short.

Expected traveling distance (km) = actual load stroke (m) × frequency of use (times/day) × number of operating days × 10^{-3} × expected number of years

The chart on the right-hand side is based on L10 life. L10 life expresses in traveling distance a life that can be reached by 90% or more of all ball screws. If you select a power cylinder based on the life, select model No. from this chart.

If the load greatly fluctuates in the middle of stroke, calculate the equivalent load (P_M) by the following equation.



Expected Traveling Distance (km)

Table 3 Coasting distance and stop accuracy (Reference value)

Table 3 Coas	ting distar	nce and s	top accur	acy (Refe	erence va	lue)		Unit: mm
Usage	Bra	ke intern	al connec	tion	Bra	ke externa	al connec	tion
	Lifting	g load	Suspend	ded load	Liftin	g load	Suspend	ded load
Model	Coasting distance	Stop accuracy	Coasting distance	Stop accuracy	Coasting distance	Stop accuracy	Coasting distance	Stop accuracy
LPTB 250 LPTC 250 H	2.2 4.3 6.9 13.7	±0.4 ±0.8 ±1.4 ±2.7	3.0 8.5 12.4 27.3	±0.6 ±2.1 ±3.2 ±7.3	1.9 3.7 6.0 12.5	±0.3 ±0.6 ±1.1 ±2.4	2.7 7.8 11.4 26.1	±0.5 ±1.9 ±2.9 ±6.9
LPTB 500 L LPTC 500 M H	2.1 3.6 6.5 12.7	±0.4 ±0.7 ±1.3 ±2.7	3.7 6.1 11.4 22.3	±0.9 ±1.6 ±2.9 ±5.9	1.8 3.1 5.9 10.2	±0.3 ±0.6 ±1.2 ±2.0	3.3 5.6 10.8 19.6	±0.8 ±1.4 ±2.7 ±5.2
LPTB 1000 LPTC 1000 H	1.7 3.2 6.3 15.6	±0.4 ±0.7 ±1.4 ±3.3	2.8 5.4 10.2 27.6	±0.7 ±1.4 ±2.6 ±7.7	1.5 2.9 5.0 10.4	±0.3 ±0.6 ±1.0 ±2.0	2.5 5.1 8.8 22.1	±0.6 ±1.2 ±2.2 ±6.3
LPTB 2000 LPTC 2000 H	1.7 3.2 7.7 13.3	±0.4 ±0.7 ±1.7 ±2.9	2.7 5.0 12.7 22.8	±0.7 ±1.3 ±3.4 ±6.4	1.5 2.5 5.2 8.0	±0.3 ±0.5 ±1.0 ±1.6	2.5 4.2 10.0 17.1	±0.6 ±1.0 ±2.7 ±4.9
LPTB 4000 LPTC 4000 H	1.2 3.8 6.4 10.9	$\pm 0.3 \\ \pm 0.8 \\ \pm 1.4 \\ \pm 2.4$	1.6 5.9 9.9 16.9	±0.4 ±1.5 ±2.6 ±4.4	0.9 2.5 3.8 6.6	±0.2 ±0.5 ±0.8 ±1.3	1.3 4.5 7.2 12.3	±0.3 ±1.1 ±1.9 ±3.2
LPTB 6000 LPTC 6000 H	0.6 2.7 4.5 7.6	±0.2 ±0.6 ±1.0 ±1.7	0.8 4.4 7.4 12.2	±0.2 ±1.2 ±2.0 ±3.2	0.5 1.8 2.7 4.6	±0.1 ±0.4 ±0.5 ±0.9	0.6 3.4 5.5 9.0	±0.1 ±0.9 ±1.5 ±2.4
LPTB 8000 LPTC 8000 H	1.9 3.6 5.6 —	±0.4 ±0.8 ±1.2 -	2.9 5.8 8.4 —	±0.7 ±1.6 ±2.1 —	1.3 2.2 3.4 5.4	±0.2 ±0.4 ±0.7 ±1.0	2.2 4.3 6.1 8.7	±0.5 ±1.1 ±1.5 ±2.0
LPTB LPTC H	2.1 3.5 —	±0.5 ±0.8	3.0 5.1 —	±0.8 ±1.3 _	1.3 2.1 3.6	±0.2 ±0.4 ±0.7	2.2 3.6 5.9	±0.5 ±0.9 ±1.4
LPTB 16000M LPTC H	2.8	±0.6 	4.0 — —	±1.0 	1.7 2.6 3.9	±0.3 ±0.5 ±0.7	2.8 4.0 8.6	±0.7 ±0.9 ±2.4
LPTB LPTC H	-	-	-	-	1.3 2.0 2.7	±0.3 ±0.4 ±0.5	2.0 4.2 4.4	±0.4 ±1.1 ±1.0

Note) Anti-rod rotation is required for actual operation

Brake holding force

Load holding force while the power cylinder stops is generated more than the rated thrust, therefore, it can be used for holding load of the rated thrust.

This holding force is generated by the braking operation of the brake motor. The brake is of a spring braking type that always performs braking operation by spring force during stoppage, and brake torque has a holding force of 150% or more of the motor rated torque.

Stoppage

This method operates and stops the brake by the limit switch or operation of the stop button, and allows for positioning on multi-stages such as the upper limit, lower limit and middle of the stroke. Coasting distance and stop accuracy vary depending on operating speed and load. When accurate positioning is required, low operation speed or brake individual turnoff is recommended. Take coasting distance into consideration to set the limit switch and the output stop signal. Reference values are shown in Table 3.

Coasting distance: This indicates a distance from a time when the limit switch or the stop button is operated until the cylinder stops. This coasting distance varies depending on how the load is applied and the operation circuit. Stop accuracy: This indicates variation of the stop position when stop is repeated.

* When selecting the H speed, refer to the cautions for selecting on page 44.

* Select a power cylinder of a sufficient thrust, allowing for a safety rate so that the loads used (static and dynamic) do not exceed the rated thrust.

Example of selection

1. Operation method : Opening degree adjustment type damper open/close (Stop at middle two points, press and stop at extend limit and retract limit) 2. Required thrust : 12.7kN {1300kgf}

3. Stroke : 600mm

4. Speed : 600mm/s for approximately 20 seconds

6. Operating time : 10 hours/day, 250 days operation/year, durable years approximately 5 years 7. Characteristics of load : Operation with light impact, loaded when extend and retract 8. Use environment : Outdoor installation, much dust, temperature 0℃~35℃ 9. Power source : 220V 60Hz

5. Frequency of operation : One reciprocation/10 minutes (6 reciprocations/hour)

<Determination of type>: With press and stop, internal stop \rightarrow Select TC type

<Determination of model No.>: 1. Operation factor : 1.3

2. Corrected thrust : 12.7kN {1300kgf} ×1.3=16.5kN {1680kgf}

3. Model No. : LPTC 2000L6

Stop at two middle points ____ L — With bellows (much dust)

<Characteristics check>: 1. Number of starting times

- Number of starting : 2 times/10min < 4 times/min</p>
- •Load time ratio : 600×2

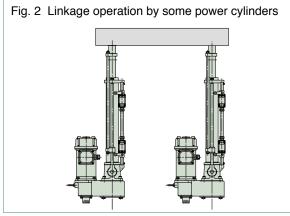
<u>30</u> 10×60 ×100=6.7%<25%

- 2. Number of total press (pull) stop times : 2 times/1 reciprocation, durable years: 5 years (250 days/year) $2 \times 6 \times 10 \times 250 \times 5 = 15 \times 10^4$ times < 30 x 10⁴ times
- <Life check>: 1. Annual traveling distance : 0.6×2×6 times/hour×10 hours/day×250 days/year×10³=18km
 - 2. Expected traveling life : 18km×5 years=90km
 - 3. Equivalent load : $P_M = \frac{16.5 + 16.5 \times 2}{2} = 16.5 \text{kN} \{1680 \text{kgf}\}$

This calculated value satisfies the expected traveling life of LPTC 2000 according to the load-life diagram on page 16.

Table 4 Allowable mass in consideration of inertia at time of horizontal drive

Power cylinder model		LPTB LPTC : 250			LPTB LPTC : 500		LPTB LPTC : 1000			LPTB LPTC : 2000			LPTB LPTC : 4000		00	
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Allowable mass	M	4300	1500	850	5500	2650	950	10000	3200	2200	12300	8400	7100	31800	26000	16800
Power cylinder model		LPTB LPTC : 6000		LPTB LPTC : 8000			LPTB LPTC : 12000			LPTB LPTC : 16000			LPTB LPTC : 32000		000	
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Allowable mass	m	73000	60000	39000	106000	69000	86000	271000	158000	200000	274000	344000	189000	1368000	761000	860000


Note) There is no problem with low speed S.

Selection 3

Multiple operation method

As shown in Fig. 2, transfer or elevation can be carried out by sharing load on some power cylinders.

This is because there is less speed fluctuation due to variation in load. For selection, pay attention to the items at the right.

Control method

To start, turn on the power for all of the cylinders, and stop them with the limit switches installed on each power cylinder. When all of the cylinders are controlled with one limit switch, stroke error is accumulated, therefore, avoid controlling with one limit switch. For an example of the control circuit, refer to example of the

For an example of the control circuit, refer to example of the multiple circuit (page 42).

Multiple accuracy

Variation in speed of each power cylinder during operation is generated due to variation in load, and is generally approximately 5%. For variation at stop, refer to the stop accuracy in Table 4. When synchronizing power cylinders, use the multi-series.

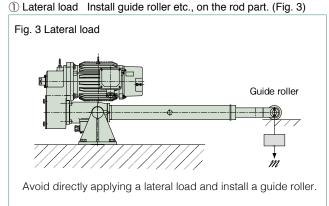
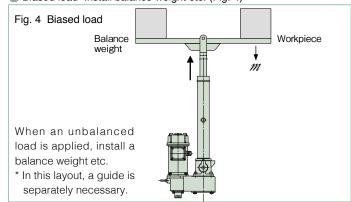
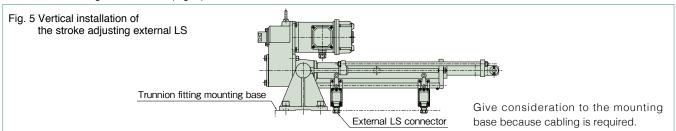

Thrust per and gulinder	Required thrust N {kgf}
Thrust per one cylinder =	Number of power cylinders to be used x Multiple factor

Table 5 Multiple factor

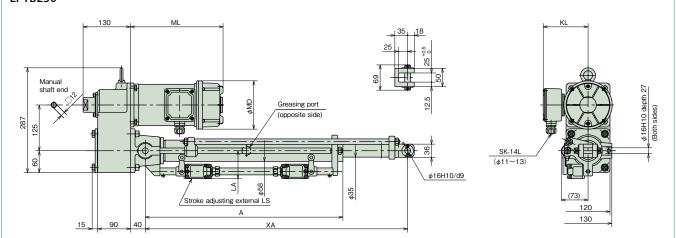

Number of power cylinders used	2 cylinders	3 cylinders	4 cylinders	5 cylinders	6 cylinders
Multiple factor	0.8	0.7	0.6	0.55	0.5

Cautions for layout

When the load is in the right angle direction (lateral load) or load of which direction is biased (biased load) is applied on the rod, take the following countermeasures.



2 Biased load Install balance weight etc. (Fig. 4)


③ Anti-rod rotation --- A rotating force is generated on the rod with thrust (page 9), therefore, prevent rotation on the equipment side.
 ④ Vertical installation of stroke adjusting external LS (stroke 300mm or less) --- The connector portion of the external LS appears below the

trunnion mounting base surface. (Fig. 5)

Unit: kg

LPTB250

					nit: mm
Model	Nominal speed mm/s 50/60Hz	Motor kW	MD	ML	KL
LPTB250S	12.5/15	0.1		296	125
LPTB250L	25/30	0.1	132	221	
LPTB250M	50/60	0.2	152	231	125
LPTB250H	100/120	0.4		253	

					ι	Jnit: mm		
Nominal	Thi	rust	A	Х	A	LA		
stroke	kN	{kgf}	A	MIN	MAX	LA		
200			340	435	635	161		
300				440	545	845	101	
400	2.45	250	540	655	1055			
500		-			640	765	1265	76.5
600			740	870	1470			

Approximate mass of main body											
Nominal stroke Model	200	300	400	500	600						
LPTB250S	35	36	37	38	39						
LPTB250L	32	33	34	35	36						
LPTB250M	32	33	34	35	36						
LPTB250H	34	35	36	37	38						

1. This diagram shows a power cylinder with an external limit switch for stroke adjustment.

2. If the stroke is 300mm or less and a limit switch for stroke adjustment is equipped, the limit switch is vertically mounted. Note that the LA dimension becomes larger. (See ④ in Cautions for layout on page 18.)

3. Mechanical stroke has a margin of approximately 10mm on both sides for the nominal stroke.

4. For the cylinder with bellows, the stroke will also not change.

40

Ø16H10/d9

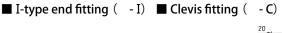
Mass : 1.7kg

10

5. For connector part dimensions of the motor terminal box, refer to page 41.

Options

■ Bellows (- J)

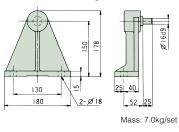

Ø 90

18

25

Ø16 H10

35



Q

¢\30

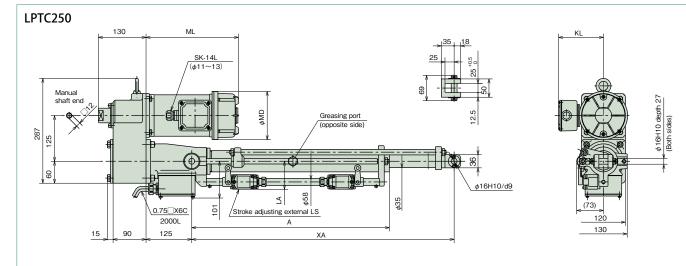
°120

■ Trunnion fitting (LPTB500-T)

Note) Shipped as attached to the main body. The XA dimensions are the same as the standard U-type end fitting.

12.5

<u>4-ø11</u>


MAX RZ

(Ø

Note) Apply grease to the trunnion pin and trunnion hole before mounting.

* Dimensions with no tolerance described have general tolerance, and their sizes become larger by approximately 2 to 5mm from the described dimensions. When designing the machine, take the margin into consideration.

12.5

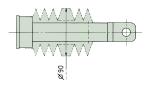
				U	nit: mm
Model	Nominal speed mm/s 50/60Hz	Motor kW	MD	ML	KL
LPTC250S	12.5/15	0.1		296	
LPTC250L	25/30	0.1	132	231	125
LPTC250M	50/60	0.2	152	251	125
LPTC250H	100/120	0.4		253	

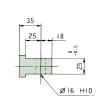
Unit: mm

Nominal	Th	rust	٨	Х		
stroke	kN	{kgf}	A	MIN	MAX	LA
200			340	435	635	161
300			440	545	845	101
400	2.45	250	540	655	1055	
500			640	765	1265	76.5
600			740	870	1470	

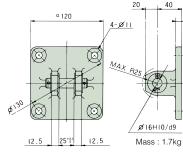
Approximate mass of main body											
Nominal stroke Model											
LPTC250S	39	40	41	42	43						
LPTC250L	36	37	38	39	40						
LPTC250M	LPTC250M 36 37 38 39										
LPTC250H	38	39	40	41	42						

- 1. This diagram shows a power cylinder with an external limit switch for stroke adjustment.
- 2. If the stroke is 300mm or less and a limit switch for stroke adjustment is equipped, the limit switch is vertically mounted. Note that the LA dimension becomes larger. (See ④ in Cautions for layout on page 18.)
- 3. Mechanical stroke has a margin of approximately 10mm on both sides for the nominal stroke.
- 4. For the cylinder with bellows, the stroke will also not change.

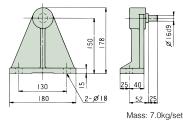

10


- 5. Use TC type model in brake individual turnoff.
- 6. For connector part dimensions of the motor terminal box, refer to page 41.

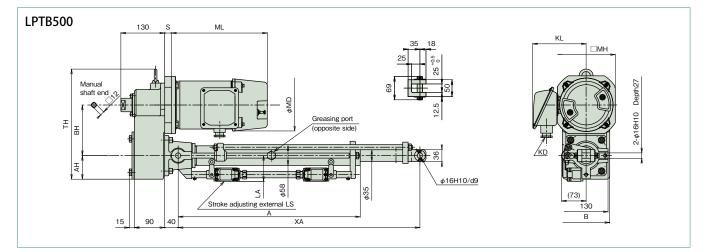
Options


Bellows (- J)

■ I-type end fitting (- I) ■ Clevis fitting (- C)



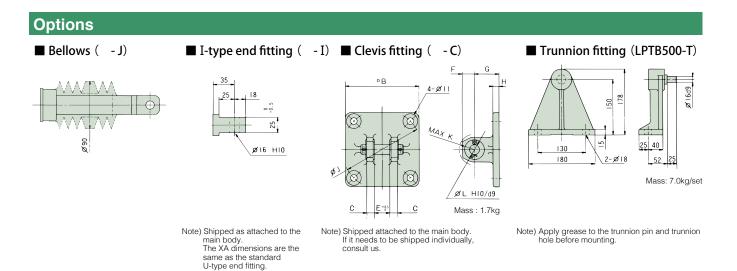
Note) Shipped as attached to the

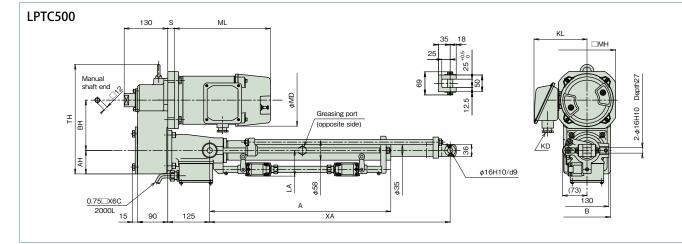

Note) Shipped attached to the main body. If it needs to be shipped individually, consult us.

Trunnion fitting (LPTB500-T)

Note) Apply grease to the trunnion pin and trunnion hole before mounting.

main body. The XA dimensions are the same as the standard U-type end fitting. * Dimensions with no tolerance described have general tolerance, and their sizes become larger by approximately 2 to 5mm from the described dimensions. When designing the machine, take the margin into consideration.

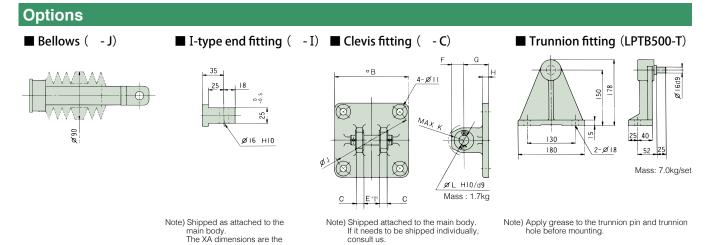

																			Uni	it: mm
Model	Nominal speed mm/s 50/60Hz	Motor kW	MD	ML	KL	KD	МН	AH	BH	TH	S	В	с	Е	F	G	Н	J	K	L
LPTB500S	12.5/15	0.1		231							65									
LPTB500L	25/30	0.2	132	251	125	SK- 14L	120	60	125	287		120	12.5	25	20	10	10	130	25	16
LPTB500M	50/60	0.4		253							_					40				
LPTB500H	100/120	0.75	180	289	166	A20C	170	70	150	327	20	140	15	30	25		12	140	31	20
Linit: mm Approximate mass of main body Linit: kg																				


Unit: mm												
Nominal	Thrust		•	X	A	LA						
stroke	kN	{kgf}	A	MIN	MAX	LA						
200			340	435	635	161						
300			440	545	845	101						
400	1 00	500	540	655	1055							
500	4.90 500	4.90	4.90	500	500	500	002 1	500	640	765	1265	76.5
600				740	870	1470	70.5					
800			940	1090	1890							

Approximate mass of main body Unit: kg											
Nominal stroke Model	200	300	400	500	600	800					
LPTB500S	35	36	37	38	39	41					
LPTB500L	32	33	34	35	36	38					
LPTB500M	34	35	36	37	38	40					
LPTB500H	43	44	45	46	47	49					

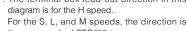
1. This diagram shows a power cylinder with an external limit switch for stroke adjustment.

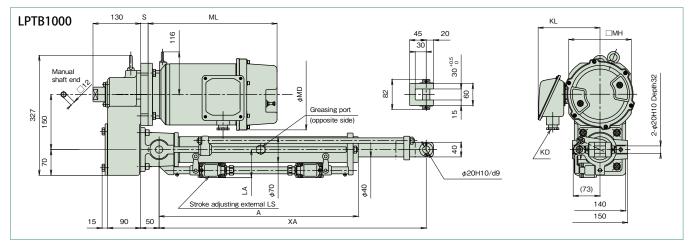
- If the stroke is 300mm or less and a limit switch for stroke adjustment is equipped, the limit switch is vertically mounted. Note that the LA dimension becomes larger. (See ④ in Cautions for layout on page 18.)
- 3. Mechanical stroke has a margin of approximately 10mm on both sides for the nominal stroke.
- 4. For the cylinder with bellows, the stroke will also not change.
- 5. For connector part dimensions of the motor terminal box, refer to page 41.


																			Un	it: mm
Model	Nominal speed mm/s 50/60Hz	Motor kW	MD	ML	KL	KD	МН	AH	BH	TH	S	В	с	E	F	G	н	J	К	L
LPTC500S	12.5/15	0.1		231							65									
LPTC500L	25/30	0.2	132	251	125	SK- 14L	120	60	125	287		120	12.5	25	20	40	10	130	25	16
LPTC500M	50/60	0.4]	253							_					40				
LPTC500H	100/120	0.75	180	289	166	A20C	170	70	150	327	20	140	15	30	25		12	140	31	20

Unit: mm																				
Nominal	Th	rust	Α	X	LA															
stroke	kN	{kgf}	A	MIN	MAX	LA														
200		500	340	435	635	161														
300			500	440	545	845	101													
400	4.90			540	655	1055														
500	4.90			500	500	500	500	500	500	500	500	500	500	500	500	500	0 500	640	765	1265
600			740	870	1470	70.5														
800							1 1			(940	1090	1890							

Ap	Approximate mass of main body Unit: I												
~	Nor stro 1odel	minal oke	200	300	400	500	600	800					
L	PTC50	0S	39	40	41	42	43	45					
L	PTC50	0L	36	37	38	39	40	42					
L	PTC50	0M	38	39	40	41	42	44					
L	PTC50	0H	47	48	49	50	51	53					


1.	This diagram shows a power cylinder with	an
	external limit switch for stroke adjustment.	


- 2. If the stroke is 300mm or less and a limit switch for stroke adjustment is equipped, the limit switch is vertically mounted. Note that the LA dimension becomes larger. (See ④ in Cautions for layout on page 18.)
- 3. Mechanical stroke has a margin of approximately 10mm on both sides for the nominal stroke.
- 4. For the cylinder with bellows, the stroke will also not change.
- 5. Use TC type model in brake individual turnoff. 6. For connector part dimensions of the motor
- terminal box, refer to page 41. 7. The terminal box lead-out direction in this
- diagram is for the H speed.
- the same as the LPTC250 type.

* Dimensions with no tolerance described have general tolerance, and their sizes become larger by approximately 2 to 5mm from the described dimensions. When designing the machine, take the margin into consideration.

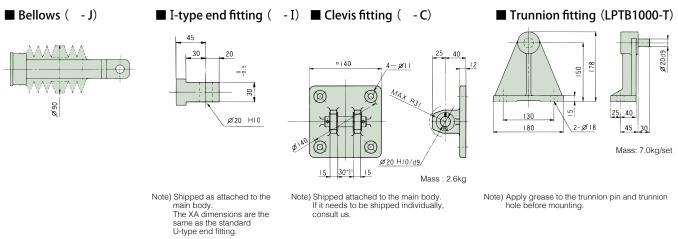
same as the standard U-type end fitting.

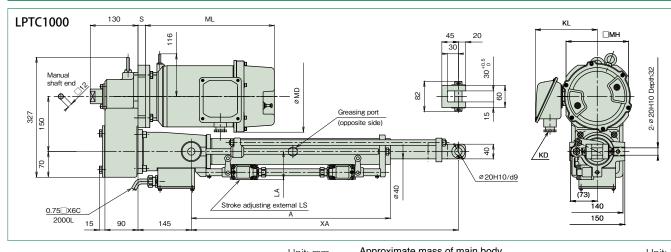
								Uni	t: mm
	Model	Nominal speed mm/s 50/60Hz	Motor kW	MD	ML	KL	KD	мн	S
l	LPTB1000S	12.5/15	0.2			SK-	120	65	
I	LPTB1000L	25/30	0.4	132 2	253		14L	120	-
1	LPTB1000M	50/60	0.75 18		289	166	1200	170	20
	LPTB1000H	100/120	1.5	194	351	178	A20C	170	20

					ι	Jnit: mm			
Nominal	Thrust		A	Х	LA				
stroke	kN	{kgf}	A	MIN	MAX	LA			
200		_	360	465	665	161			
300			460	575	875	161			
400	9.80	1000	560	685	1085				
500	9.00	1000	1000	1000	1000	660	795	1295	
600			760	900	1500	76.5			
800			960	1120	1920				
1000	7.84	800	1160	1340	2340				

Approximate mass of main body									
Nominal stroke Model	200	300	400	500	600	800	1000		
LPTB1000S	42	44	45	47	48	51	54		
LPTB1000L	40	42	43	45	46	49	52		
LPTB1000M	46	48	49	51	52	55	58		
LPTB1000H	50	52	53	55	56	59	62		

1. This diagram shows a power cylinder with an external limit switch for stroke adjustment.


2. If the stroke is 300mm or less and a limit switch for stroke adjustment is equipped, the limit switch is vertically mounted. Note that the LA dimension becomes larger. (See ④ in Cautions for layout on page 18.)


3. Mechanical stroke has a margin of approximately 10mm on both sides for the nominal stroke.

4. For the cylinder with bellows, the stroke will also not change.

5. For connector part dimensions of the motor terminal box, refer to page 41.

Options

							Uni	t: mm
Model	Nominal speed mm/s 50/60Hz	Motor kW	MD	ML	KL	KD	мн	S
LPTC1000S	12.5/15	0.2	132	231	125	SK-	120	65
LPTC1000L	25/30	0.4	152	253	125	14L	120	-
LPTC1000M	50/60	0.75	180	289	166	1200	170	20
LPTC1000H	100/120	1.5	194	351	178	A20C		20

Ur										
Nominal	Thrust		•	Х						
stroke	kN	{kgf}	A	MIN	MAX	LA				
200			360	465	665	161				
300			460	575	875	161				
400	9.80	1000	560	685	1085					
500	9.00	1000	1000	1000	1000	9.80 1000	660	795	1295	
600										760
800			960	1120	1920					
1000	7.84	800	1160	1340	2340					

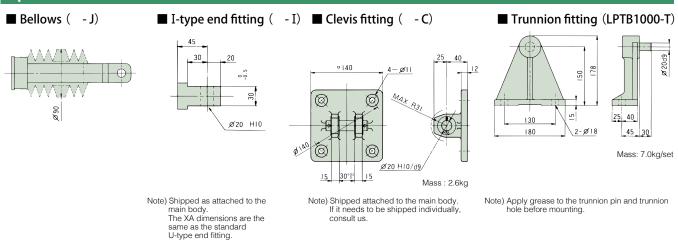
Approximate mass of main body								
Nominal stroke	200	200	400	500				

Nominal stroke Model	200	300	400	500	600	800	1000
LPTC1000S	48	50	51	53	54	57	60
LPTC1000L	46	48	49	51	52	55	58
LPTC1000M	52	54	55	57	58	61	64
LPTC1000H	56	58	59	61	62	65	68

 This diagram shows a power cylinder with an external limit switch for stroke adjustment.

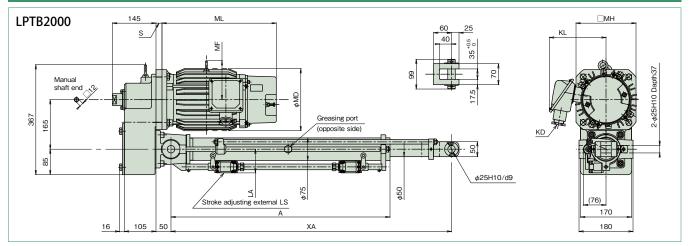
2. If the stroke is 300mm or less and a limit switch for stroke adjustment is equipped, the limit switch is vertically mounted. Note that the LA dimension becomes larger. (See ④ in Cautions for layout on page 18.)

3. Mechanical stroke has a margin of approximately 10mm on both sides for the nominal stroke.


4. For the cylinder with bellows, the stroke will also not change.

5. Use TC type model in brake individual turnoff.

6. When the model of the TC type nominal stroke 1000mm is used, press and stop cannot be carried out near the maximum stroke in terms of buckling strength.


7. For connector part dimensions of the motor terminal box, refer to page 41.

Options

* Dimensions with no tolerance described have general tolerance, and their sizes become larger by approximately 2 to 5mm from the described dimensions. When designing the machine, take the margin into consideration.

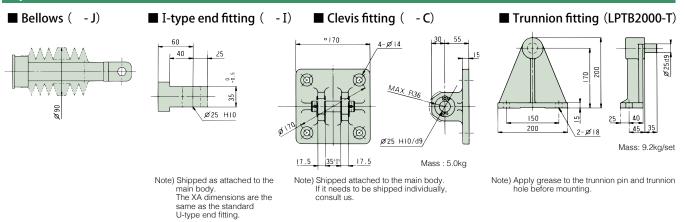
Unit: **kg**

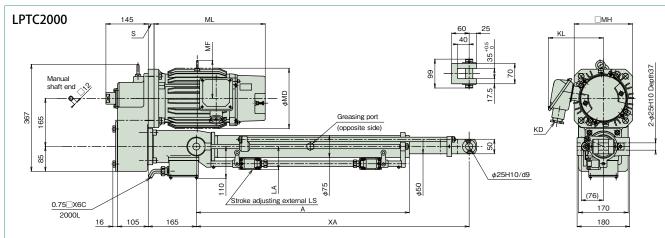
								Uni	t: mm	
Model	Nominal speed mm/s 50/60Hz	Motor kW	MD	ML	MF	KL	KD	мн	S	
LPTB2000S	12.5/15	0.4	132	253		125	SK- 14L	120	70	
LPTB2000L	25/30	0.75	180	289	-	166	1200	170	170	
LPTB2000M	50/60	1.5	194	351		178	A20C		_	
LPTB2000H	75/90	2.2	207	381	130	190	A25C	200	20	

					ι	Jnit: mm	
Nominal	Thrust		Α	Х	A	LA	
stroke	kN	{	A	MIN	MAX	LA	
200			400	520	720	164	
300			500	630	930	104	
400	19.6	2000	600	740	1140		
500	19.0	2000	700	850	1350		
600				800	955	1555	79
800			1000	1175	1975	/9	
1000	15.6	1600	1200	1395	2395		
1200	12.2	1250	1400	1615	2815		

Approximate mass of main body										
Nominal stroke Model	200	300	400	500	600	800	1000	1200		
LPTB2000S	56	58	60	62	64	68	72	76		
LPTB2000L	55	57	59	61	63	67	71	75		
LPTB2000M	59	61	63	65	67	71	75	79		
I PTR2000H	70	72	74	76	78	82	86	90		

1. This diagram shows a power cylinder with an external limit switch for stroke adjustment.


2. If the stroke is 300mm or less and a limit switch for stroke adjustment is equipped, the limit switch is vertically mounted. Note that the LA dimension becomes larger. (See ④ in Cautions for layout on page 18.)


3. Mechanical stroke has a margin of approximately 10mm on both sides for the nominal stroke.

4. For the cylinder with bellows, the stroke will also not change.

5. For connector part dimensions of the motor terminal box, refer to page 41.

Options

								Unit	: mm	
Model	Nominal speed mm/s 50/60Hz	Motor kW	MD	ML	MF	KL	KD	мн	S	
LPTC2000S	12.5/15	0.4	132	253		125	SK- 14L	120	70	
LPTC2000L	25/30	0.75	180	289	_	- 166	166	A20C	170	
LPTC2000M	50/60	1.5	194	351		178	AZUC	170	_	
LPTC2000H	75/90	2.2	207	381	130	190	A25C	200	20	

					ι	Jnit: mm					
Nominal	Thrust		Α	X	XA						
stroke	kN	{kgf}	A	MIN	MAX	LA					
200		5 2000	400	520	720	164					
300			500	630	930	104					
400	19.6		600	740	1140						
500	19.0		2000	2000	2000	2000	2000	2000	700	850	1350
600			800	955	1555	79					
800			1000	1175	1975	/9					
1000	15.6	1600	1200	1395	2395						
1200	12.2	1250	1400	1615	2815						

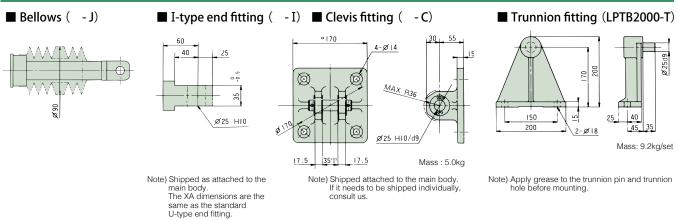
Approximate ma	ass of main body
----------------	------------------

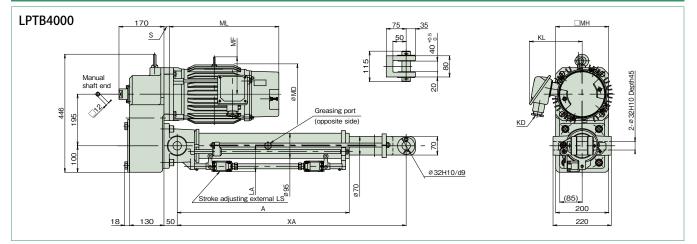
Approximate mass of main body Unit:												
Nominal stroke Model	200	300	400	500	600	800	1000	1200				
LPTC2000S	64	66	68	70	72	76	80	84				
LPTC2000L	63	65	67	69	71	75	79	83				
LPTC2000M	67	69	71	73	75	79	83	87				
LPTC2000H	78	80	82	84	86	90	94	98				

1. This diagram shows a power cylinder with an external limit switch for stroke adjustment

2. If the stroke is 300mm or less and a limit switch for stroke adjustment is equipped, the limit switch is vertically mounted. Note that the LA dimension becomes larger. (See ④ in Cautions for layout on page 18.)

3. Mechanical stroke has a margin of approximately 10mm on both sides for the nominal stroke.


4. For the cylinder with bellows, the stroke will also not change.


5. Use TC type model in brake individual turnoff.

6. When the model of the TC type nominal stroke 1000 or 1200mm is used, press and stop cannot be carried out near the maximum stroke in terms of buckling strenath.

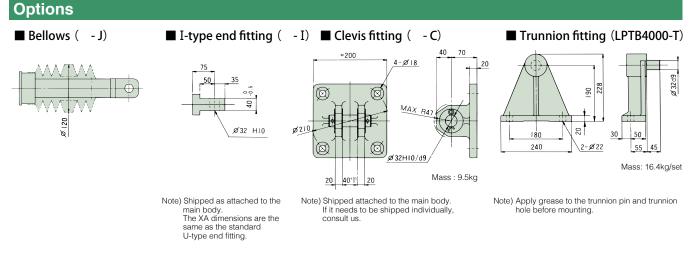
7. For connector part dimensions of the motor terminal box, refer to page 41.

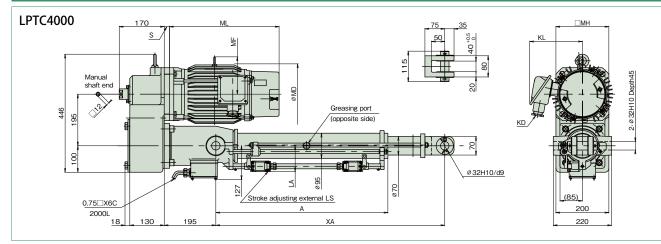
Options

								Unit	t: mm	
Model	Nominal speed mm/s 50/60Hz	Motor kW	MD	ML	MF	KL	KD	мн	S	
LPTB4000S	9/11	0.75	180	289		_	166	A20C	170	90
LPTB4000L	25/30	1.5	194	351		178		170	_	
LPTB4000M	35/42	2.2	207	381	130	190	1250	200	20	
LPTB4000H	60/72	3.7	229	414	141	201	201 A25C		20	

					ι	Jnit: mm				
Nominal	Thi	rust	А	Х	LA					
stroke	kN	{ kgf }	A	MIN	MAX	LA				
200			440	585	785	182				
300	1		550	695	995	102				
400	1		650	650 805 12	1205					
500	39.2	4000	4000	4000	4000	4000	750	910	1410	
600	39.2					850	1020	1620		
800			1050	1235	2035	97.5				
1000	1		1250	1450	2450					
1200			1450	1670	2870					
1500	33.3	3400	1750	1995	3495					

Approximate mass	U	nit: kg							
Nominal stroke Model	200	300	400	500	600	800	1000	1200	1500
LPTB4000S	90	94	97	101	104	111	118	125	136
LPTB4000L	87	91	94	98	101	108	115	122	133
LPTB4000M	97	101	104	108	111	118	125	132	143
LPTB4000H	116	120	123	127	130	137	144	151	162


1. This diagram shows a power cylinder with an external limit switch for stroke adjustment.


2. If the stroke is 300mm or less and a limit switch for stroke adjustment is equipped, the limit switch is vertically mounted. Note that the LA dimension becomes larger. (See ④ in Cautions for layout on page 18.)

3. Mechanical stroke has a margin of approximately 10mm on both sides for the nominal stroke.

4. For the cylinder with bellows, the stroke will also not change.

5. For connector part dimensions of the motor terminal box, refer to page 41.

								Unit	: mm
Model	Nominal speed mm/s 50/60Hz	Motor kW	MD	ML	MF	KL	KD	мн	S
LPTC4000S	9/11	0.75	180	289		166	A20C	170	90
LPTC4000L	25/30	1.5	194	351		178	AZUC		_
LPTC4000M	35/42	2.2	207	381	130	190	ADEC	200	20
LPTC4000H	60/72	3.7	229	414	141	201	A25C	200	20

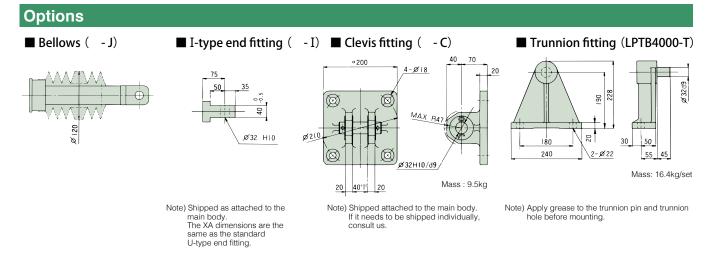
					ι	Jnit: mm				
Nominal	Thrust		Α	Х	LA					
stroke	kN	{ kgf }	A	MIN	MAX	LA				
200			440	585	785	182				
300		4000	550	695	995	102				
400			650	805	1205					
500	20.2		4000	4000	4000	4000	750	910	1410	
600	39.2					850	1020	1620		
800			1050	1235	2035	97.5				
1000			1250	1450	2450					
1200			1450	1670	2870	1				
1500	33.3	3400	1750	1995	3495					

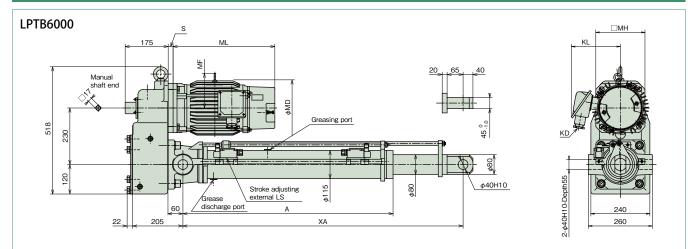
Approximate mass of main body

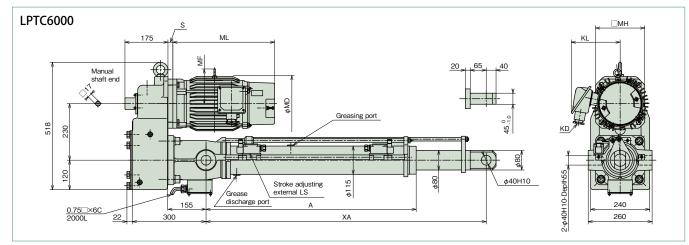
Approximate mass of main body Unit											
Nominal stroke Model	200	300	400	500	600	800	1000	1200	1500		
LPTC4000S	105	109	112	116	119	126	133	140	151		
LPTC4000L	102	106	109	113	116	123	130	137	148		
LPTC4000M	112	116	119	123	126	133	140	147	158		
LPTC4000H	131	135	138	142	145	152	159	166	177		

1. This diagram shows a power cylinder with an external limit switch for stroke adjustment.

2. If the stroke is 300mm or less and a limit switch for stroke adjustment is equipped, the limit switch is vertically mounted. Note that the LA dimension becomes larger. (See ④ in Cautions for layout on page 18.)


3. Mechanical stroke has a margin of approximately 10mm on both sides for the nominal stroke.


4. For the cylinder with bellows, the stroke will also not change.


5. Use TC type model in brake individual turnoff.

6. When the model of the TC type nominal stroke 1500mm is used, press and stop cannot be carried out near the maximum stroke in terms of buckling strength.

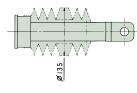
7. For connector part dimensions of the motor terminal box, refer to page 41.

								Unit	: mm
Model	Nominal speed mm/s 50/60Hz	Motor kW	MD	ML	MF	KL	KD	мн	S
LPTB6000S LPTC6000S	6.3/7.6	0.75	180	289	-	166	1200	170	90
LPTB6000L LPTC6000L	17.5/21	1.5	194	351	-	178	A20C		-
LPTB6000M LPTC6000M	25/30	2.2	207	381	130	190	A25C	200	20
LPTB6000H LPTC6000H	42/50	3.7	229	414	141	201	AZOC	200	20

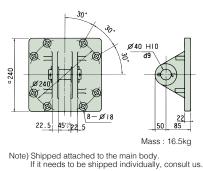
				l	Jnit: mm
Nominal	Thrust		Δ	X	A
stroke	kN	{kgf}	A	MIN	MAX
500			855	1010	1510
1000	58.8	6000	1355	1560	2560
1500			1955	2210	3710

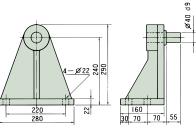
Approximate mass of m	Approximate mass of main body Unit: kg								
Nominal stroke Model	500	1000	1500						
LPTB6000S	143	168	193						
LPTC6000S	165	190	215						
LPTB6000L	151	176	201						
LPTC6000L	173	198	223						
LPTB6000M	157	182	207						
LPTC6000M	179	204	229						
LPTB6000H	172	197	222						
LPTC6000H	194	219	244						

1. This diagram shows a power cylinder with an external limit switch for stroke adjustment.


2. Mechanical stroke has a margin of approximately 10mm on both sides for the nominal stroke. 3. For the cylinder with bellows, the stroke will also not change.

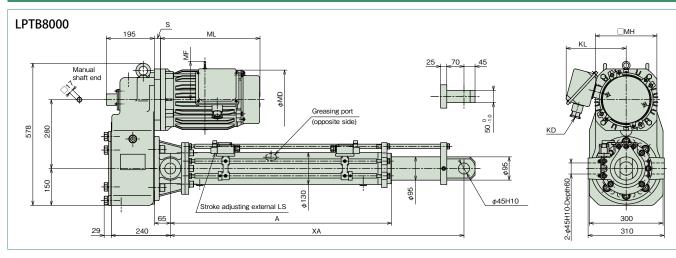
4. Use TC type model in brake individual turnoff.

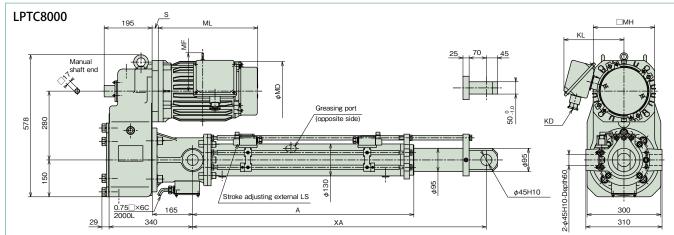

5. When the model of the TC type nominal stroke 1500mm is used, press and stop cannot be carried out near the maximum stroke in terms of buckling strength. 6. For connector part dimensions of the motor terminal box, refer to page 41.


Options

Bellows (- J)

■ Clevis fitting (- C)





■ Trunnion fitting (LPTB6000-T)

Mass: 39.0kg/set

Note) Apply grease to the trunnion pin and trunnion hole before mounting.

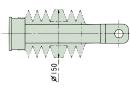
								Unit	: mm
Model	Nominal speed mm/s 50/60Hz	Motor kW	MD	ML	MF	KL	KD	мн	S
LPTB8000S LPTC8000S	10/12	1.5	194	351	_	178	A20C	170	137
LPTB8000L LPTC8000L	20/24	2.2	207	381	130	190		200	—
LPTB8000M LPTC8000M	30/36	3.7	229	414	141	201	A25C	200	_
LPTB8000H LPTC8000H	43/52	5.5	265	403	156	245		250	25

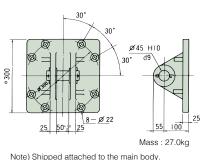
	Unit: mm									
Nominal	Thr	ust	Δ	XA						
stroke	kN	{kgf}	A	MIN	MAX					
500			900	1065	1565					
1000	78.4	8000	1400	1615	2615					
1500			1900	2165	3665					

Approximate mass of mass	Approximate mass of main body Unit: kg								
Nominal Stroke Model	500	1000	1500						
LPTB8000S	224	254	284						
LPTC8000S	254	284	314						
LPTB8000L	212	242	272						
LPTC8000L	242	272	302						
LPTB8000M	230	260	290						
LPTC8000M	260	290	320						
LPTB8000H	241	271	301						
LPTC8000H	271	301	331						

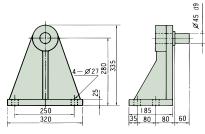
1. This diagram shows a power cylinder with an external limit switch for stroke adjustment.

2. Mechanical stroke has a margin of approximately 10mm on both sides for the nominal stroke.


3. For the cylinder with bellows, the stroke will also not change.

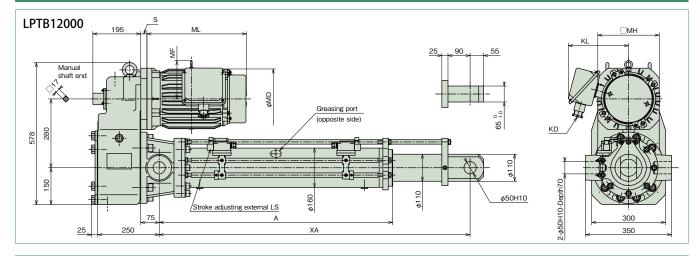

 Use TC type model in brake individual turnoff.
 When the model of the TC type nominal stroke 1500mm is used, press and stop cannot be carried out near the maximum stroke in terms of buckling strength.

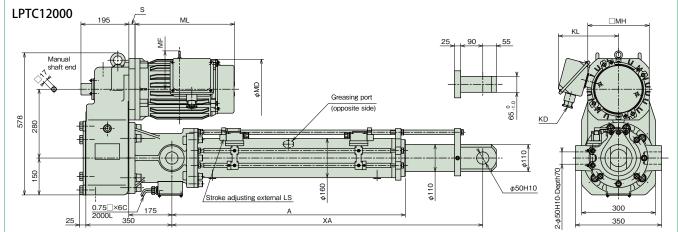
6. For connector part dimensions of the motor terminal box, refer to page 41.


Options

Bellows (- J)

■ Clevis fitting (- C)


Mass: 70.6kg/set


Note) Shipped attached to the main body. If it needs to be shipped individually, consult us.

Note) Apply grease to the trunnion pin and trunnion hole before mounting.

* Dimensions with no tolerance described have general tolerance, and their sizes become larger by approximately 2 to 5mm from the described dimensions. When designing the machine, take the margin into consideration.

Trunnion fitting (LPTB8000-T)

								Uni	t: mm
Model	Nominal speed mm/s 50/60Hz	Motor kW	MD	ML	MF	KL	KD	ΜН	S
LPTB12000L LPTC12000L	10/12	2.2	207	381	130	190		200	145
LPTB12000M LPTC12000M	18/22	3.7	229	414	141	201	A25C	250	145
LPTB12000H LPTC12000H	30/36	5.5	265	403	156	245		250	25

Unit: mm								
Nominal	Th	rust	А	XA				
stroke	kN	{kgf}		MIN	MAX			
500			950	1135	1635			
1000	117	12000	1450	1685	2685			
1500	117	12000	1950	2235	3735			
2000			2450	2785	4785			

Approximate mass of main t	body
----------------------------	------

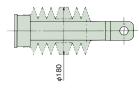
Init ko

Nominal stroke Model	500	1000	1500	2000				
LPTB12000L	270	312	354	396				
LPTC12000L	309	351	393	435				
LPTB12000M	285	327	369	411				
LPTC12000M	324	366	408	450				
LPTB12000H	295	337	379	421				
LPTC12000H	334	376	418	460				

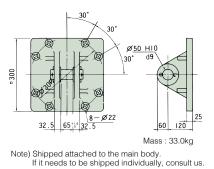
1. This diagram shows a power cylinder with an external limit switch for stroke adjustment.

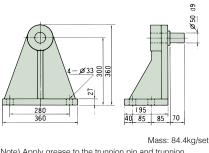
2. Mechanical stroke has a margin of approximately 10mm on both sides for the nominal stroke.

3. For the cylinder with bellows, the stroke will also not change.

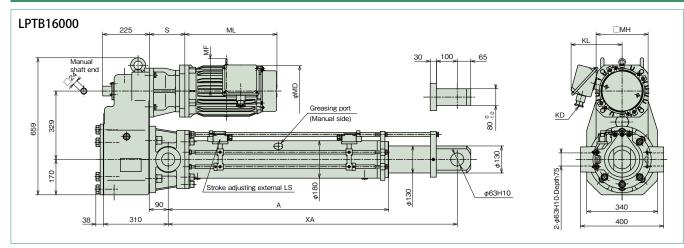

4. Use TC type model in brake individual turnoff.

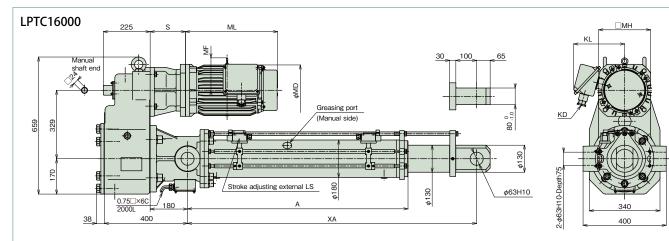
5. When the model of the TC type nominal stroke 2000mm is used, press and stop cannot be carried out near the maximum stroke in terms of buckling strength.


6. For connector part dimensions of the motor terminal box, refer to page 41.


Options

■ Bellows (- J)


■ Clevis fitting (- C)



Trunnion fitting (LPTB12000-T)

Note) Apply grease to the trunnion pin and trunnion hole before mounting.

								Uni	t: mm
Model	Nominal speed mm/s 50/60Hz	Motor kW	MD	ML	MF	KL	KD	мн	S
LPTB16000L LPTC16000L	14.5/17.5	3.7	229	414	141	201			145
LPTB16000M LPTC16000M	20/24	5.5	265	403	156	245	A25C	250	170
LPTB16000H LPTC16000H	31/37	7.5	265	441	156	245			170

	Unit: mm									
Nominal	Th	rust	A	X	A					
stroke	kN	{kgf}		MIN	MAX					
500			1060	1260	1760					
1000	156	16000	1560	1810	2810					
1500	150	10000	2060	2360	3860					
2000			2560	2910	4910					

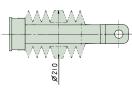
Approximate mass of main body

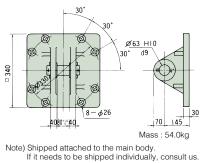
Nominal stroke Model	500	1000	1500	2000				
LPTB16000L	469	525	581	637				
LPTC16000L	518	574	630	686				
LPTB16000M	480	536	592	648				
LPTC16000M	529	585	641	697				
LPTB16000H	490	546	602	658				
LPTC16000H	539	595	651	707				

1. This diagram shows a power cylinder with an external limit switch for stroke adjustment.

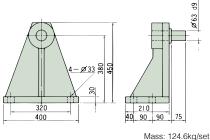
2. Mechanical stroke has a margin of approximately 10mm on both sides for the nominal stroke.

3. For the cylinder with bellows, the stroke will also not change.


4. Use TC type model in brake individual turnoff.

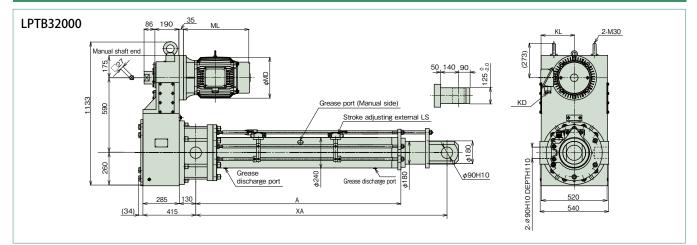

5. When the model of the TC type nominal stroke 2000mm is used, press and stop cannot be carried out near the maximum stroke in terms of buckling strength.

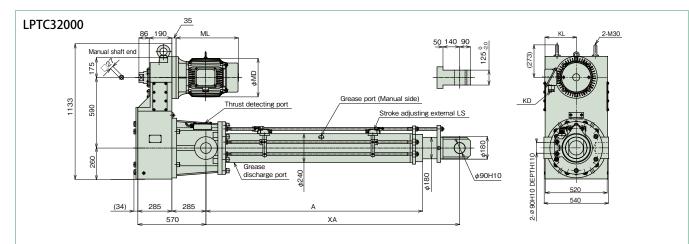
6. For connector part dimensions of the motor terminal box, refer to page 41.


Options

■ Bellows (- J)

■ Clevis fitting (- C)

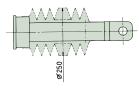

Trunnion fitting (LPTB16000-T)


pody. Note) Apply grease to t

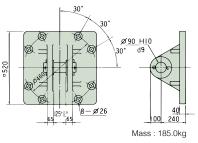
Note) Apply grease to the trunnion pin and trunnion hole before mounting.

* Dimensions with no tolerance described have general tolerance, and their sizes become larger by approximately 2 to 5mm from the described dimensions. When designing the machine, take the margin into consideration.

Unit[,] kg


							Ur	nit: mm
Model	Thrust Nominal speed Moto	Motor	MD ML		KL	KD		
Model	kN	{kgf}	mm/s	kW		IVIL	NL.	
LPTB32000L LPTC32000L			10/12	5.5	265	403	245	A25C
LPTB32000M LPTC32000M	313	32000	15/18	7.5	265	441	245	A25C
LPTB32000H LPTC32000H			20/24	11	324	519	263	A30B

Unit: mm				
Nominal	Δ	XA		
stroke	A	MIN	MAX	
500	1315	1575	2075	
1000	1815	2125	3125	
1500	2315	2675	4175	
2000	2815	3225	5225	


Unit: mm				
Nominal	Α	XA		
stroke		MIN	MAX	
500	1315	1575	2075	
1000	1815	2125	3125	
1500	2315	2675	4175	
2000	2815	3225	5225	

0	oti	io	ns
\mathbf{U}	μu		

Bellows (- J)

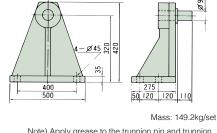
■ Clevis fitting (- C)

6 Ø 90

Trunnion fitting (LPTB32000-T)

Unit: kg

1509


1599

1519

1609

1588

1678

Note) Shipped attached to the main body. If it needs to be shipped individually, consult us.

Approximate mass of main body

LPTB32000L

LPTC32000L

LPTB32000M

LPTC32000M

LPTB32000H

LPTC32000H

adjustment.

nominal stroke.

Model

Nomin str<u>oke</u>

1215

1305

1225

1315

1294

1384

3. For the cylinder with bellows, the stroke will also not change.

1. This diagram shows a power cylinder with an external limit switch for stroke

2. Mechanical stroke has a margin of approximately 10mm on both sides for the

4. For connector part dimensions of the motor terminal box, refer to page 41.

1313

1403

1323

1413

1392

1482

1411

1501

1421

1511

1490

1580

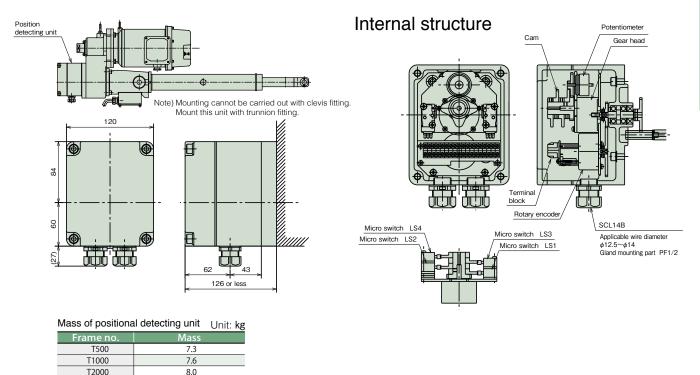
Note) Apply grease to the trunnion pin and trunnion hole before mounting.

Power Cylinder

Position detecting unit

T4000

T6000


T8000

T12000

T16000

The following three types of position detecting devices can be built in as your requested.

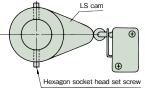
- 1. Position detecting internal limit switch (with two or four switches)
- 2. Potentiometer
- 3. Rotary encoder

1. Position detecting internal limit switch (with two or four switches)

9.0

12.2

13.3


13.3

14.5

● With two switches (symbol K2) ……… Layout of micro switches LS1 and LS2 in the previous diagram

● With four switches (symbol K4) ········ Layout of micro switches LS1, LS2, LS3 and LS4 in the previous diagram

	Option symbol	Applicatio	Micro switch specification		
Position detecting internal LS		LSF	Externd: External press stop, position detecting Retract: Determined position stop	Model	D2VW-5L2A-1M (OMRON) Equivalent
				Electric configuration	250V AC 4A (cos=0.7)
		LS2 LS1			1C
	K2	LS2 LSF	Both ends determined position stop	Contact configuration Note) In the table at the left	
			Both ends external press stop, position detection		Ø p p Ø
		LSR			ø
Position detecting internal LS	K4		Extend: Middle determined position stop External press stop, position detection Retract: Two-determined position stop For both extend and retract: External press stop, position detection Middle determined position stop		
					For terminal No., refer to page 110.
		LS2 LS4			Stops with operation of the micro switch for thrust detection.
					Stops with operation of the micro switch for position detection.
		LŜR LS4	····		Detects position with operation of the micro switch for position
					detection.

<Setting of LS>

For adjustment of the operating position, operate the power cylinder to adjust the LS cam. Loosen the hexagon socket head set screws (2 pieces) on the LS cam with a hexagon bar wrench (nominal 1.5).

Position detecting unit

2. Potentiometer

This is a variable resistor to output electric signals depending on the stroke amount of the cylinder. Use this unit in combination with a printed board and a stroke indication meter. Resistance values according to the model have been adjusted before shipment.

Separately request preset values according to the model as they are described in the position detecting unit specification drawing. Pay strict attention to handling because correspondence between the stroke position and the resistance value will deviate by rotating the rod of the power cylinder.

Potentiometer specifications					
Model	CP-30 or equivalent				
Manufacturer	SAKAE TSUSHIN KOGYO CO., LTD.				
Total resistance value	1kΩ				
Rated power	0.75W				
Dielectric strength	1000V AC 1min.				
Effective electric degree	355°±5°				
Effective mechanical 360° endless					
Connection	Connected to terminal block in position detecting unit				
P1					
P2					
Cylinder rod retract					

The output signal of the standard specification is of an incremental

Note 1) Due to the open collector output, output signals are obtained when the pull-up

<Reference resistance values> 5V: 220Ω, 12V: 470Ω, 24V: 1kΩ

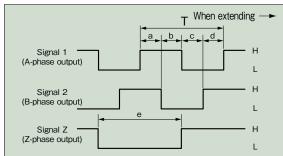
Signal 1 and signal 2 are output voltages of H "(power supply voltage – 1)V or more" and L "1V or less."

The output type in standard specifications is open collector. If voltage output type is required, see (Note 1) below. If the specification of line driver output is required, contact us.

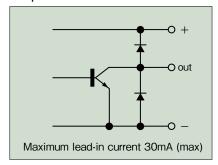
type, however, an absolute type is also available.

For the Z-phase, negative logic applies.

3. Rotary encoder


Rotary encoder specifications					
Model	TS5305N251 Tamagawa Seiki Co., Ltd.				
Manufacturer					
Output pulse number	600P/R				
Output waveform	90° phase difference two-phase square wave + home position output				
Output voltage	H Note 1)				
Output voltage	L 1V or less Note 1)				
Power supply	5~24V DC				

Output connection


Signal 1	Signal 2	Signal Z	+5V to 24V	0V	Case
(9)	(10)	(11)	(12)	(13)	(14)

Figures in parentheses indicate terminal No.

Output waveform

Output circuit

resistor is connected.

a. b. c. d = T/4 \pm T/8 T/2 \leq e \leq 3T/2

* Best suited to controlling the stroke by a sequencer or programmable controller, etc.

More accurate positioning control is possible in combination with motor speed control by an inverter, etc.

① The standard products incorporate an incremental type encoder.

2 The rotary encoder has been set to output 10 pulse per stroke of 1mm.

③ It is possible to set an accurate home position of the machine in combination with a limit switch because home position output is read out every 600 pulses.

- ④ Do not apply vibration or impact to the rotary encoder because it is precision equipment.
- ⑤ Use shield wire for wiring to the rotary encoder.

(6) As a guide for the distance between the rotary encoder and control panel, a collector current of 20mA should be able to be transmitted approximately 50m (12V pull-up).

For distances other than the above, consult with us.

Position detecting unit

Wire connection in position detecting unit

Use terminals provided in the unit for wire connection to the position detecting internal limit switch, potentiometer and rotary encoder. COM on the internal LS means common use. (internally wire-connected)

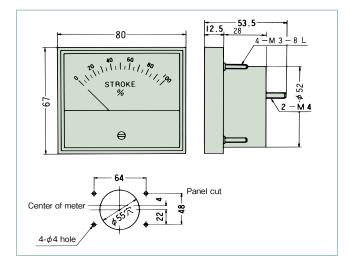
Use shield wire for wiring to the rotary encoder.

Power cylinder wiring terminal	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Equipment wiring terminal	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0

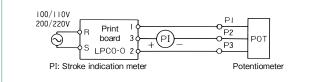
Terminal No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Option	Internal LS (K2, K4)						Potentiometer Rotary encoder											
Symbol	LS		LS	52	LS	3	LS	54	Common use		Р					R		
Contact	а	b	а	b	а	b	а	b	с	1	2	3	1	2	Z	+5V~24V	0V	Case
Terminal No.	18	17	5	6	16	15	7	8	4	1	2	3	9	10	11	12	13	14

Control option

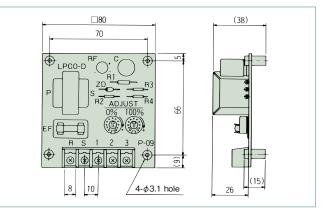

Stroke indication meter

Model	RM-80B(100μA DC) or equivalent
Grade	JIS C 1102 2.5 class
Appearance	Frame•black
Scale specifications	Full stroke indicated by 100%


1. Special scale and wide angle gauge are also available at your request.

2. When you want to express scale in other than percentage, indicate this to us.

* A separate printed board is also required.

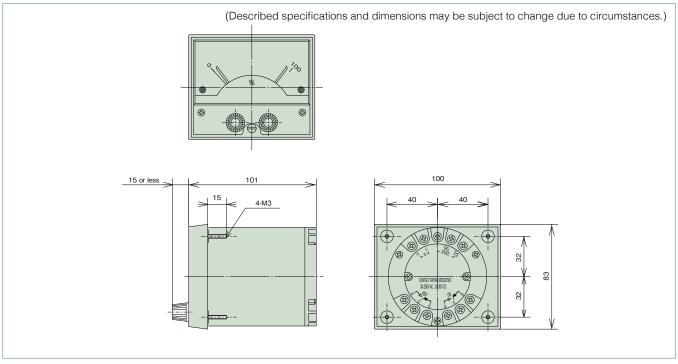


Printed board

Adjust the meter with an ADJUST volume on the printed board. Do not make a mistake with the stroke indication meter +, -. Replace the terminals 1 and 2 on the print board to set the indication meter to 100% when the stroke is MIN.

Model LPCO-D1 (Operation power source 100/110V 50/60Hz) LPCO-D2 (Operation power source 200/220V 50/60Hz)

Control option


Meter relay

Used for simple adjustment of stroke on the operation panel.

(Iron panel installation is standard. Separately indicate to us when installing an aluminum panel.)

Note) For using 4 – 20mA output, designate as "for 4 – 20mA output." * A separate printed board is also required.

Meter relay specifications
NRC-100HL (TSURUGA) or equivalent product
JIS C 1102 2.5 class
Frame •Black
Full stroke indicated by 100%
100/100V AC, 200/220V AC 50/60Hz
100 μ A DC maximum
1C for both HIGH, LOW sides
(refer to the following Fig.)
250V AC 3A (cos $\varphi = 1$)

The main body of the power cylinder is provided with a potentiometer.

The phase of a stroke deviates if the rod is rotated before installation. Therefore, cylinders with a stroke adjusting limit switch are recommended.

Pre-set minimum and maximum strokes to be used with the stroke adjusting limit switch, then use the meter relay.

<Print board>

This is the same as the print board for the stroke indication meter.

<Relay operation> (In the case of b contact)

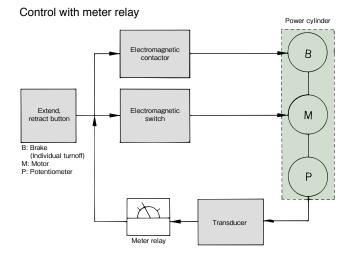
Shock relay

Our highly reliable shock relay is recommended as an electric safety device for the power cylinder of the TB type. For details, refer to the "TSUBAKI E&M electric overload protection devices shock monitor shock relay catalogue."

ower Cvlinde

Stroke control for power cylinder

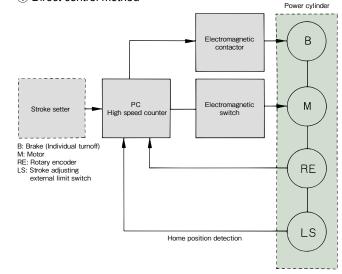
There are various methods of positioning control for the power cylinder. Positioning accuracy greatly varies depending on the speed of the power cylinder, the size of the load, the size of a load inertia, the operating direction (vertical, horizontal) and the wire connection method for the brake. Control methods may be limited depending on the operating condition. As such, what methods there are will be conceptually described here.


Limit switch method

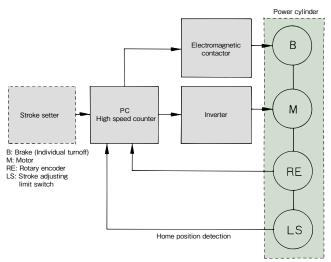
- ① With stroke adjusting limit switch ······ Positioning of stroke upper and lower limit
- ② With position detecting limit switch……Intermediate positioning Accuracy generally increases with lower cylinder speed.
- ③ Press (pull) stop (Thrust detecting limit switch for T series TC type is used.)

This is a method that stoppers are mechanically provided on both ends of a stroke used for equipment driven by the power cylinder, and press, pull stop are carried out, and then a thrust detecting limit switch for the power cylinder is used. The stroke is mechanically regulated by the stoppers, therefore, accurate positioning is possible.

Method with potentiometer

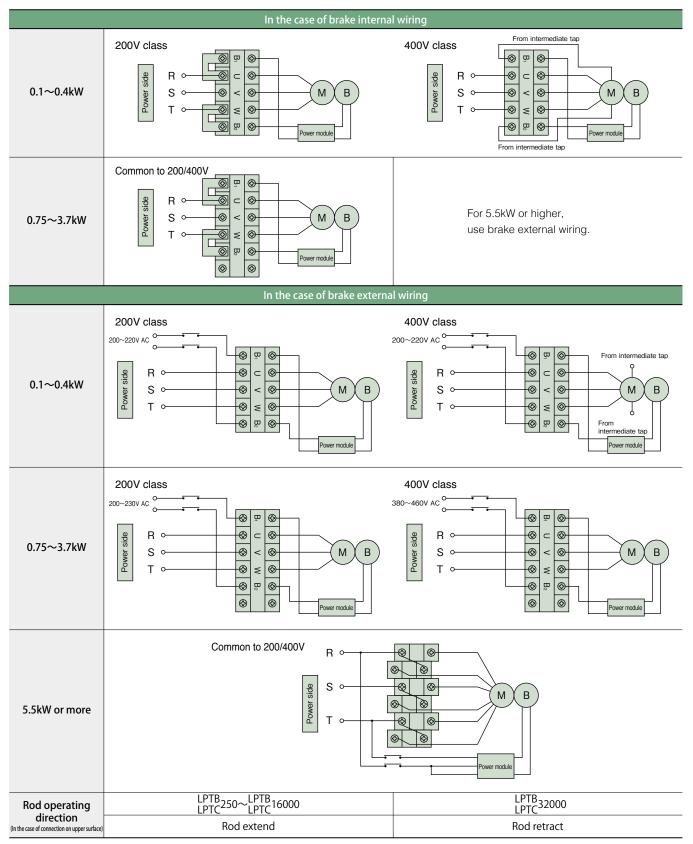

This method is convenient when you want to change the stroke of the power cylinder on the control side. Accuracy generally increases as the cylinder speed decreases. For the power cylinder body, the method with a stroke adjusting limit switch is recommended to prevent stroke over.

Method with rotary encoder (RE)


This method controls stroke by a programmable controller (PC). Use the PC with a counter. Use a limit switch to detect home position. (For the power cylinder body, the method with a stroke adjusting limit switch is recommended.)

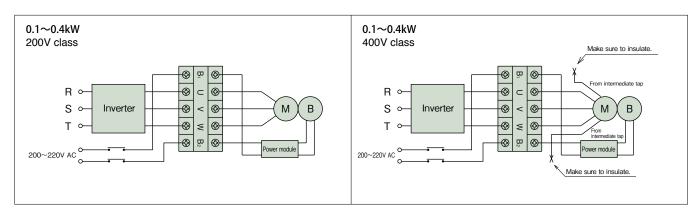
① Direct control method

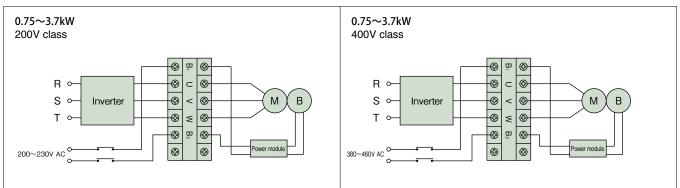
With this method, when OFF signals for the motor and the brake are not simultaneously outputted from the PC, and OFF signal for the motor is outputted earlier, the cylinder coasts while decelerating. Highly accurate positioning is possible because the power cylinder operates at a low speed such as output of an operation signal for the brake just before the stop position.

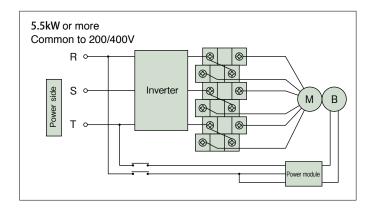

2 Motor speed control method

Note that, when a heavy object is moved up or down, or a load with a large inertia is operated, it may not be sufficiently slowed down by any method.

Wire connection


Wire connection for brake motor (Motor with DC brake)




* Crimp contact bolt: M4

© Wire connection method when inverter is used or brake is used in individual turnoff DC brake

- If the motor is operated by the inverter, it is necessary to individually turn off the brake. When individually turning off the brake, as shown in the following diagram, remove the short piece, and do not connect wire to the brake power module from the inverter output, apply a normal power voltage. Separately provide a power supply shown in the following diagram and apply power to the brake power module. If separate power cannot be provided, decrease the voltage by a transformer. Use a transformer whose the capacity is more than necessary, and check that there is no voltage drop. And if the motor voltage of 0.1 to 0.4kW is 400V class, also remove the wire from the motor intermediate tap and insulate it.
- If the motor voltage of 0.4kW or less is 400V class, remove the wire from the motor intermediate tap and insulate it, and separately provide a power supply of 200V to 220V and apply power to the brake power module. If there is no power source of 200V to 220V, decrease the voltage to 200V to 220V by a transformer. The capacity of the transformer shall be 90VA or more, and check that there is no voltage drop. Use an electromagnetic contactor for the brake of 200V class with a rated load of 250V AC, 7A or more. For the 400V class, use an electromagnetic contactor with a contact voltage of 400 to 440V AC, an induction load of 1A or more (e.g. electromagnetic contactor for AC motor 2.2kW). The power module includes a surge absorbing protection element. Add a protection element for the contact in each part if necessary.
- Do not put a relay contact on the output side of the standard power module (between the power module and brake coil). When carrying out [DC individual turnoff wiring] in which the relay contact is put into the position, contact us beforehand.

Wire connection

Dimensions of motor terminal, connector part

Shape of terminal box	Motor capacity	Shape of connector	Applicable cable outer diameter	Connector part mounting dimension A	Terminal box seat hole dimension B
(0.4kW or less)	0.1kW~0.4kW	SK-14L	φ11~φ13	PF 1/2	_
	0.75kW~1.5kW	A20C	φ14~φ15	PF 3/4	φ28
	2.2kW~7.5kW	A25C	φ19~φ20	PF 1	φ35
(0.75kW or more)	11kW	A30B	φ23~φ24	PF 1•1/4	φ42

Note) A rubber plug or plate has been inserted into the connector to prevent water etc., from intruding before shipment. Make sure to remove it when using.

Limit switch specifications

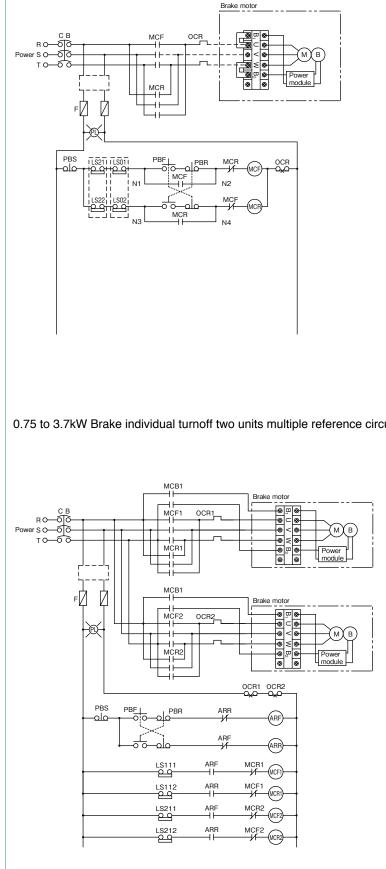
	Stroke adjusting external LS	Thrust detecting LS (LPT16000 or smaller)	Thrust detecting LS			
Limit switch type	WLCA2(OMRON) or equivalent	V-165-1AR5(OMR	ON) or equivalent	Z-15GW22-B(OMRON) or equivalent			
Electric capacity	250V AC 10A ($\cos \phi = 0.4$)	250V AC 10	$A(\cos\phi=0.4)$	250V AC 10A ($\cos\phi = 0.4$)			
	1a 1b	For advancing	For retreating	For advancing	For retreating		
Contact configuration	NC 1 \longrightarrow 4 NO NC 2 \longrightarrow 3 NO	$\begin{array}{c} \text{Red} & \underline{\qquad} 3 \\ \\ \text{Black} & \underline{\qquad} 1 \\ \text{White} & \underline{\qquad} 2 \\ \end{array}$	4 Green 5 Yellow 0 6 Brown	Black	4 <u>Gr</u> een 5 Yellow 6 Brown		
Connector (Applicable cable outer diameter)	SCS-10B (φ8.5~φ10.5) PF1/2	SCL-14A (<i>φ</i> 10.5	~φ12.5) PF1/2	SCS-14Α (φ10.5	~φ12.5) PF1/2		

Motor current value • brake current value

Output		Μ	otor curre	ent value (A	A)		- Brake	Brake current value (A)						
frame No.	200V 50Hz	200V 60Hz	220V 60Hz	400V 50Hz	400V 60Hz	440V 60Hz	model No.	200V 50Hz	200V 60Hz	220V 60Hz	400V 50Hz	400V 60Hz	440V 60Hz	
4P - 0.1kW	0.72 (2.76)	0.62 (2.60)	0.65 (2.84)	0.36 (1.38)	0.31 (1.27)	0.32 (1.41)	SBH01LP	0.18 0.27	0.18 0.27	0.19 0.29	0.18 0.27	0.18 0.27	0.19 0.29	
4P - 0.2 kW	1.3 (4.91)	1.1 (4.68)	1.1 (5.14)	0.63 (2.40)	0.55 (2.22)	0.56 (2.41)	SBH02LP	0.18 0.27	0.18 0.27	0.19 0.29	0.18 0.27	0.18 0.27	0.19 0.29	
4P - 0.4 kW	2.4 (11.6)	2.1 (10.2)	2.1 (11.0)	1.2 (5.14)	1.1 (4.88)	1.1 (5.39)	SBH04LP	0.18 0.27	0.18 0.27	0.19 0.29	0.18 0.27	0.18 0.27	0.19 0.29	
4P - 0.75 kW	3.9 (24.0)	3.5 (22.0)	3.4 (24.0)	1.9 (12.0)	1.7 (11.0)	1.7 (12.0)	SLB07LP	0.18 0.27	0.18 0.27	0.20 0.30	0.09 0.15	0.09 0.15	0.10 0.16	
4P - 1.5 kW	6.5 (49.0)	6.1 (45.0)	5.8 (50.0)	3.2 (24.5)	3.1 (22.5)	2.9 (25.0)	SLB15LP	0.18 0.29	0.18 0.29	0.20 0.32	0.09 0.15	0.09 0.15	0.11 0.16	
4P - 2.2 kW	9.6 (67.0)	9.0 (59.0)	8.6 (64.9)	4.8 (33.5)	4.5 (29.5)	4.3 (32.5)	TB-A2.2	0.25 0.34	0.25 0.34	0.25 0.34	0.13 0.17	0.13 0.17	0.13 0.17	
4P - 3.7 kW	15.2 (122)	14.4 (104)	13.6 (114)	7.6 (61.0)	7.2 (51.8)	6.8 (57.0)	TB-A3.7	0.34 0.44	0.34 0.44	0.34 0.44	0.17 0.22	0.17 0.22	0.17 0.22	
4P - 5.5 kW	22.4 (146)	21.0 (125)	19.8 (138)	11.2 (73.0)	10.5 (62.5)	9.9 (68.8)	TB-A7.5	1.5 2.0	1.5 2.0	1.5 2.0	3.0 4.0	3.0 4.0	3.0 4.0	
4P - 7.5 kW	29.6 (215)	28.2 (185)	26.4 (204)	14.8 (108)	14.1 (92.5)	13.2 (102)	TB-A7.5	1.5 2.0	1.5 2.0	1.5 2.0	3.0 4.0	3.0 4.0	3.0 4.0	
4P - 11 kW	42.5 (290)	41.0 (249)	38.0 (274)	21.5 (145)	20.5 (124)	19.0 (137)	TB-A15	1.3 1.7	1.3 1.7	1.3 1.7	2.6 3.4	2.6 3.4	2.6 3.4	

Note) 1. The above values are rated current values of the motor and brake. A numerical value in parentheses is a start current value of the motor.

2. The rated current values and start current values do not include a brake current value.


3. A DC brake is used as a brake. The upper stage of the brake current value indicates a value on the primary side of the power module, and the lower stage indicates a value on the

secondary side. 4. The above values are references because the rated current values for the power cylinder vary depending on operating conditions.

5. For simultaneous turnoff of 0.1kW to 0.4kW, 400V class, the voltage is converted to 200V through the motor intermediate tap to be input. For individual turnoff, decrease the voltage to 200 to 220V by a transformer. The capacity of the transformer capacity shall be 90VA or more.

6. For individual turnoff of 0.75kW or more, 400V class, the DC module is applicable for 400V class, therefore, it is unnecessary to decrease the voltage. 7. For 0.75kW and 1.5kW of 400V class, the brake model Nos. are "SLB07LPV" and "SLB15LPV," respectively.

0.75 to 3.7kW TC type reference circuit diagram

LS01: Stroke adjusting external limit switch for extending

LS21: Thrust detecting limit switch for extending

LS02: Stroke adjusting external limit switch for retracting

LS22: Thrust detecting limit switch for retracting

NOTE :

- (1) This diagram is an example when the thrust detecting limit switch is used for overload protection
- (2) This diagram shows a single-acting circuit. When using in an inching circuit, remove wire connection between N1 and N2, N3 and N4 and short-circuit the PBS.
- (3) If the power source voltage for the motor is different from the control voltage, place a transformer into a portion in the diagram.
- (4) The lead wires B1 and B2 for the brake are connected to the motor terminal blocks U and W using short pieces.
- (5) When individually turning off the brake, remove the short piece and apply a normal power source voltage other than inverter output to B1 and B2 from the outside

0.75 to 3.7kW Brake individual turnoff two units multiple reference circuit diagram

LS111: LPNo.1 Stroke adjusting external limit switch for extending LS1 LS112: LPNo.1 Stroke adjusting external limit switch for retracting LS1 LS211: LPNo.2 Stroke adjusting external limit switch for extending LS2 LS212: LPNo.2 Stroke adjusting external limit switch for retracting LS2

NOTE :

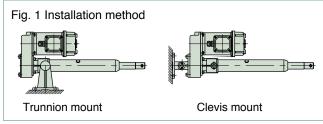
- (1) This diagram is an example of 0.75kW or more brake individual turnoff two units inching multiple circuit.
- (2) If the power source voltage for the motor is different from the control voltage, place a transformer into a _____ portion in the diagram.
- (3) As the brake terminal blocks B1 and B2 are connected to the motor terminal blocks U and W using short pieces, remove the short pieces before use.
- (4) Apply a normal power source voltage other than inverter output to B1 and B2 from the outside.

* For reference circuit for the type of 0.4kW or less.

Ū

Installation

Installation direction


Any of horizontal, vertical and inclined direction is allowed.

Installation method

For installation of the main body, use a trunnion mount or clevis mount (parallel only).

Apply grease to the trunnion pin and the bracket hole before mounting.

Install the end part with a U-type or I -type end fitting.

* For the mount fitting, refer to the item of options.

Manual operation

When manually adjusting the stroke, rotate the manual handle shaft on the reducer part with a monkey wrench or a socket wrench after releasing the brake for the brake motor.

MARNING

When load is applied to the rod, remove the load before releasing the brake.

For the amount of movement of the rod per one turn of the manual shaft, refer to the standard model list (page 9).

Anti-rod rotation

- Anti-rod rotation is required because a rotating force is generated on the rod with thrust (refer to page 9). Generally, rotation can be mostly prevented by installing the rod end to a driven machine.
- 2. When operating with the end set free or in the case of application to install pulleys to pull a rope, a rod anti-rotation is normally required.

Lateral load on rod

Install the power cylinder so as to prevent bending load (lateral load) from acting on the rod.

Setting of stroke adjusting external LS

- Take a coasting amount into consideration for adjustment of the limit switch.
- When using the cylinder at the nominal stroke 100%, set the limit switch so that the cylinder stops within the XA dimension in the Dimensions Table.
- When simultaneously operating two or more power cylinders, install a limit switch at the upper limit and lower limit on each cylinder.

Maintenance

Lubrication on ball screw

Use the ball screw as it is because it has been lubricated with grease in advance. Refill grease with reference to Table 1-2 as a guide. To apply grease to the ball screw, remove the greasing port bolt on the outer cylinder and advance the rod in the full stroke and apply grease to the outer circumference of the screw with a grease gun, and then reciprocate the rod within the stroke to be used. Repeat this operation a few times.

WARNING

Never insert your finger into the greasing port.

A

If the cylinder operates with your finger inserted, your finger may be injured.

Table 1 Recommended grease

Use classification	Company name	Grease name					
Screw	TSUBAKI E&M	JWGS100G					
	IDEMITSU KOSAN	*DAPHNE EPONEX SRNo.2					
	NIPPON GREASE	NIGULUBE EP-2K					
shaft	EXXON MOBILE	MOBILUX EPNo.2					
	COSMO OIL LUBRICANTS	COSMO GREASE DINAMX EPNo.2					
	SHOWA SHELL	SHELL ALBANIA EP grease 2					

* The above greases are filled before shipment. Note) JWGS100G is separately sold in a container of 100g.

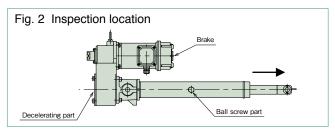
Table 2 Lubrication cycle

Operating frequency	Lubrication cycle
500 to 1000 times/day	Three to six months
100 to 500 times/day	Six months to one year
10 to 100 times/day	One to one and half year

Note) The above values are for longer use, and do not indicate the life.

Greasing on Reduction part

For the gear and the bearing in the reducer part, the gear case is filled with grease. Accordingly, it is not necessary to grease because they normally endure use for one year or longer. However, operation for a long time or use after long storage impairs the lubrication effect due to deterioration of grease. Therefore, inspect and grease.


Reducer part initial filled grease

Gear case: DAPHNE EPONEX SRNo.1 IDEMITSU KOSAN Planetary gear (straight type): Moly gear grease No. 1 SUMICO LUBRICANT CO., LTD.

Gap adjustment of brake

Although the electromagnet stroke (gap) of the brake has been adjusted to approximately 1.2 through 1.3mm (limit gap 1.5mm) for 0.4kW or less or to approximately 0.2mm (limit gap 0.5mm) for 0.75kW or more, re-adjust it before it exceeds the limit gap value.

For details, refer to the Operation Manual.

Cautions for selecting

- Anti-rod rotation is required because a rotating force is exerted on the rod with thrust. Rod rotating forces at the rated thrust are described in the model list. When operating with the end unconnected or when installing pulleys to pull rope, use an optional rod anti-rotation specification.
- When the cylinder operating stroke is short, a high speed type cylinder cannot be used because the operating time per one stroke becomes shorter and cannot be actually controlled. The following table shows minimum necessary strokes when motor energization time is 0.5s. Refer to this table to determine the speed.

Speed symbol	Н
Nominal speed mm/s 50/60Hz	100/120
0.5s operation moving amount mm	50/60
Predicted maximum coasting amount mm (Reference)	24/33
Minimum necessary stroke mm	74/93 or more

Cautions for installation

- Apply grease to the trunnion pin and the trunnion hole for trunnion mounting.
- Also, apply grease to the connecting pin of the end fitting and the connecting pin for clevis mounting.
- When the main body greatly swings by operation of the cylinder, consider using a sliding bearing or a rolling bearing for the connecting part. Cylinders whose trunnion hole is provided with sliding bearing are available as MTO.
- When the trunnion pin or connecting pin for the clevis or the end fitting is directed in the vertical direction (when the cylinder is laid horizontally), and the main body swings, take countermeasures for wear such as inserting a bearing member into the trunnion hole, the clevis fitting, or the side part of the end fitting.
- All models are totally enclosed structures so that they can be used normally outdoors, however, under adverse conditions exposed to constant water and steam etc., and snow accumulation, although they are an outdoors type, an appropriate cover is required. The power cylinder can generally be used in a range of -15°C to 40°C, although it varies depending on the use conditions. When using at 40°C or higher, always protect with a heat insulating cover, etc. Never use in a flammable atmosphere, otherwise it may cause an explosion and fire. In addition, avoid using it in a location where vibration or shock exceeding 1G is applied.
- When using a cylinder of the cabtire cable lead wire specification outdoors, carry out waterproofing treatment sufficiently.

Cautions for use

- Regulate the both ends of the stroke by the limit switch. Select a type of option which allows the limit switch to be mounted on the power cylinder body.
- Use within the stroke range. If the stroke is exceeded, breakage may occur.
- As a high-speed type (H speed) of the power cylinder T series has a long coasting distance, the striker may override the limit switch. For this reason, make sure to allow a limit signal to be self-held on the control circuit.
- Megger testing is prohibited for this cylinder. It may break the built-in power module. Remove the brake wiring for the terminal block when conducting megger testing of the external circuits.
- Adjustment of the limit switch for thrust detection of the TC type must not be carried out by the customer. The
 preset value for thrust detection may greatly change.

Power Cylinder Inquiry Form

Inform TSUBAKI E&M of the following items when making an inquiry.

Company name:	Your name:				
TEL :	FAX :				
(〒 -)					
Address:					

uc	1. Application load (thrust)	Normal operation	N{kgf}	Max	N{kgf}					
Standar Specification	2. Speed		mm/s (at 50Hz, 60Hz)							
Spe	3. Stroke	Actual stroke	mm	Max stroke	mm					
Electric Motor	4. Power)V/60Hz、220V/60Hz)V/60Hz、440V/60Hz	Others						
Electr	5. Special Specification	Brake, Outdoors,	Explosion-proof	Others						
	6. Operation	times/min x (Back and forth c	min/hrs. x count as 2)	hrs./day x	days/yr.					
nent	7. Ambient Temperature			°C						
Operating Environment	8. Mounting Location	Indoor, Outdoors,	Explosion-proof	Others]				
erating E	9. Dust	Average, High								
Ope	10. Control Device	Stroke adjustment externa Internal LS, Potentic		Others						
	11. Others	Trunnion fitting, crevice fit	ting, I-shape end fitting	g (Others						

Layout Other information

SAFETY

Warning Observe the following safety precautions to prevent serious injuries.

- Do not release the brake while jack is loaded. If the brake is released under loaded conditions, suspended objects may fall and lead to accidents.
- •Make sure the jack is not loaded when manually operated. Operate jack according to the instruction manual.
- During suspending operations, provide safety guards to prevent load from falling and never stand under the jack.
- Observe the Labor Safety & Hygiene Regulations, General Criteria, Paragraph 1, Chapter 1, Edition 2, or your local regulations.
- Installation, removal, maintenance and inspection:
 - · Carry out operation according to the instruction manual.
 - While performing electrical wiring, observe laws and regulations such as Electricity Equipment Criteria and Extension Rules, as well as the cautions (e.g. direction, space, operating conditions, etc.) indicated in the manual. Be especially careful in following the instructions on grounding to prevent electric shocks.
 - Turn off the power and make sure that it does not reconnect accidentally.
 - · Wear appropriate clothing and protective gears (safety glasses, gloves, safety shoes, etc.).

🌔 Cau

Caution Observe the following safety precautions to prevent accidents.

- •Always operate within the allowable stroke range. Operating a jack outside its allowable stroke range may result in accidents.
- Before switching on the jack, make sure the limit switches have been wired correctly and the stroke has been adjusted appropriately.
- The motor must be driven within the correct electrical voltage range to prevent motor burnout or fire.
- •Efficiencies of parts may decrease with wear and age. Carry out periodic inspections as set forth in the manual.
- When the parts are no longer functioning or are ineffective, please contact a TSUBAKI E&M distributor for repair.
- •Read the manual provided with the product thoroughly before operating and refer to it as necessary. If the instruction manual is misplaced, request a replacement copy from TSUBAKI E&M or your TSUBAKI E&M distributor, indicating the product name, series, and model number.
- The instruction manual must be delivered to the final user.

Warranty

1. Warranty period without charge

18 months effective the date of shipment or 12 months effective the first use of Goods, including installation of Goods to Buyer's equipment or machine - whichever comes first.

2. Warranty coverage

Should any damage or problem with the Goods arise within the warranty period, given that the Goods were operated and maintained according to the instructions provided in the manual, Seller will repair and replace at no charge once the Goods are returned to the Seller. This warranty does not cover the following: 1) Any costs related to removal of Goods from the Buyer's

- equipment or machine to repair or replace parts. 2) Cost to transport Buyer's equipment or machine to the Buyer's
- repair shop.
- Costs to reimburse any profit loss due to any repair or damage and other consequential losses caused by the Buyer.

3. Warranty with charge

- Seller will charge any investigation and repair of Goods caused by:
- 1) Improper installation by failing to follow the instruction manual.
- 2) Insufficient maintenance or improper operation by the Buyer.
- 3) Incorrect installation of Goods to other equipment or machine.

- 4) Any modifications or alterations of Goods by the Buyer.
- 5) Any repair by engineers other than the Seller or those designated by the Seller.
- Operation in an inappropriate environment not specified in the manual.
- Force Majeure or forces beyond the Seller's control such as natural disasters and injustices done by a third party.
- Secondary damage or problem incurred by the Buyer's equipment or machine.
- 9) Defected parts supplied, or specified by the Buyer.
- 10) Incorrect wiring or parameter setting by the Buyer.
- 11) The end of life cycle of the Goods under normal usage.
- 12) Loss or damage not liable to the Seller

4. Dispatch service

Service to dispatch a Seller's engineer to investigate, adjust or trial test Seller's Goods is at the Buyer's expense.

Caution This catalog does not include operating instructions. Read the actual manual thoroughly before installing or operating the product.

TSUBAKIMOTO CHAIN CO.

Headquarters

Nakanoshima Mitsui Building 3-3-3 Nakanoshima, Kita-ku Osaka, 530-0005, Japan Phone: +81-6-6441-0011 URL: http://tsubakimoto.com

Group companies

NORTH and SOUTH AMERICA

U.S. TSUBAKI POWER TRANSMISSION, LLC 301 E. Marquardt Drive, Wheeling, IL 60090, U.S.A. Phone : +1-847-459-9500 URL : http://www.ustsubaki.com

EUROPE

TSUBAKIMOTO EUROPE B.V. Aventurijn 1200, 3316 LB Dordrecht, The Netherlands Phone: +31-78-620-4000 URL: http://tsubaki.eu

000 "TSUBAKI KABELSCHLEPP"

Prospekt Andropova 18, Building 6 115432 Moscow, Russia Phone :+7-499-418212 URL :http://tsubaki.eu

ASIA and OCEANIA

 TAIWAN TSUBAKIMOTO CO.

 No. 33, Lane 17, Zihciang North Road

 Gueishan Township Taoyuan County Taiwan R.O.C.

 Phone : +886-3-3293827/8/9

 URL : http://tsubakimoto.com.tw

TSUBAKIMOTO CHAIN (SHANGHAI) CO. LTD. Room 601, Urban City Centre, 45 Nanchang Road Huangpu District, Shanghai 2000020, People's Republic of China Phone :+86-21-5396-6651/2 URL : http://chunben.com

PT. TSUBAKI INDONESIA TRADING

Wisma 46 - Kota BNI, 24th Floor, Suite 24.15 Jl. Jend. Sudirman, Kav. 1, Jakarta 10220, Indonesia Phone :+62-21-571-4230/31 URL : http://tsubaki.sg

Distributed by:

TSUBAKI of CANADA LIMITED

Chain & Power Transmission Sales

1-3 Kannabidai 1-chome

Kyoto, 610-0380, Japan

Phone : +81-774-64-5022

Kyotanabe,

1630 Drew Road, Mississauga, Ontario, L5S 1J6, Canada Phone :+1-905-676-0400 URL :http://tsubaki.ca

TSUBAKIMOTO U.K. LTD

Osier Drive, Sherwood Park, Annesley, Nottingham NG15 0DX, United Kingdom Phone : +44-1623-688-700 URL : http://tsubaki.eu

TSUBAKIMOTO SINGAPORE PTE. LTD. 25 Gul Lane, Jurong, Singapore 629419 Phone :+65-6861-0422/3/4 URL : http://tsubaki.sg Vietnam Representative Office

Phone : +84-8-3999-0131/2

TSUBAKIMOTO (THAILAND) CO. LTD.

388 Exchange Tower, 19th Floor Unit 1902 Sukhumvit Road, Klongtoey, Bangkok 10110, Thailand Phone : +66-2-262-0667/8/9 URL : http://tsubaki.co.th

TSUBAKI POWER TRANSMISSION (MALAYSIA) SDN. BHD. No. 22, Jalan Astaka U8/84A, Bukit Jelutong Industrial Park Section U8, 40150 Shah Alam, Selangor, Malaysia Phone : +60-3-7859-8585 URL : http://tsubaki.sg

TSUBAKI BRASIL EQUIPAMENTOS INDUSTRIAIS LTDA. R. Pamplona, 1018, CJ. 73/74, Jd. Paulista

CEP 01405-001, São Paulo, S.B.Brazil Phone : +55-11-3253-5656 URL : http://tsubaki.ind.br

TSUBAKI DEUTSCHLAND GmbH

ASTO Park Oberpfaffenhofen, Friedrichshafener Straße 1 D-82205, Gilching, Germany Phone : +49-8105-7307100 URL : http://tsubaki.eu

TSUBAKI AUSTRALIA PTY. LTD. Unit E, 95-101 Silverwater Road Silverwater NSW 2128, Australia Phone :+61-02-9704-2500 URL : http://tsubaki.com.au New Zealand Branch

Phone : +64-275-082-726

TSUBAKI INDIA POWER TRANSMISSION PTE. LTD. Chandrika Chambers No.4, 3rd Floor, Anthony Street Royapettah, Chennai, Tamil Nadu 600014, India Phone: :+91-44-4231-5251 URL : :+01+44-4231-5251